morse_codec/decoder.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
//! Live decoder for morse code that converts morse code to characters. Supports real-time decoding of incoming signals and decoding
//! prepared morse signals. This module supports Farnsworth timing mode and can be used for morse
//! code practice.
//!
//! Receives morse signals and decodes them character by character
//! to create a char array (charray) message with constant max length.
//! Empty characters will be filled with the const FILLER and
//! decoding errors will be filled with DECODING_ERROR_CHAR.
//! Trade-offs to support no_std include:
//! * No vectors or any other type of dynamic heap memory used, all data is plain old stack arrays.
//! * We decode the signals character by character instead of creating a large buffer for all
//! signals and decoding it at the end. As a result, if an initial reference short duration is not
//! provided, there's a problem with words starting with 'T' decoding as different characters. This is a problem because
//! we can't determine the length of spaces (low signals) after the high signal being long with only one signal as reference.
//! Creating a large buffer would fix this, because we could audit the entire signal buffer to iron out wrong decodings,
//! but the large size of the buffer would not fit into small RAM capacities of certain 8 bit
//! MCUs like AVR ATmega328P with SRAM size of 2KB and even smaller sizes for simpler chips. So we
//! clear the buffer every time we add a character.
//!
//! One way to fix the wrong decoding problems of 'T' character is to provide an initial reference short signal
//! length to the decoder. A good intermediate value is 100 milliseconds.
//!
//! ```rust
//! use morse_codec::decoder::Decoder;
//!
//! const MSG_MAX: usize = 64;
//! let mut decoder = Decoder::<MSG_MAX>::new()
//! .with_reference_short_ms(90)
//! .build();
//!
//! // We receive high signal from button. 100 ms is a short dit signal because reference_short_ms is 90
//! // ms, default tolerance range factor is 0.5. 90 ms falls into 100 x 0.5 = 50 ms to 100 + 50 = 150 ms.
//! // So it's a short or dit signal.
//! decoder.signal_event(100, true);
//! // We receive a low signal from the button. 80 ms low signal is a signal space dit.
//! // It falls between 50 and 150.
//! decoder.signal_event(80, false);
//! // 328 ms high long signal is a dah. 328 x 0.5 = 164, 328 + 164 = 492.
//! // Reference short signal 90 x 3 (long signal multiplier) = 270. 270 falls into the range.
//! decoder.signal_event(328, true);
//! // 412 ms low long signal will end the character.
//! decoder.signal_event(412, false);
//! // At this point the character will be decoded and added to the message.
//!
//! // Resulting character will be 'A' or '.-' in morse code.
//! let message = decoder.message.as_str();
//! assert_eq!(message, "A");
//! ```
//!
use core::ops::RangeInclusive;
use crate::{
message::Message,
Character,
CharacterSet,
MorseCodeArray,
MorseCodeSet,
MorseSignal::{self, Long as L, Short as S},
DECODING_ERROR_CHAR,
DEFAULT_CHARACTER_SET,
DEFAULT_MORSE_CODE_SET,
LONG_SIGNAL_MULTIPLIER,
MORSE_ARRAY_LENGTH,
MORSE_DEFAULT_CHAR,
WORD_SPACE_MULTIPLIER,
};
/// Decoding precision is either Lazy, Accurate or Farnsworth(speed_reduction_factor: f32).
///
/// If Lazy is selected, short and long signals will be considered to saturate their
/// fields on the extreme ends. For example a short signal can be 1 ms to short range end
/// and a long signal is from this point to the start of a very long (word separator) signal.
/// If Accurate is selected, short and long signals will only be decoded correctly if they fall into a range
/// of lower tolerance value and higher tolerance value. Default value for tolerance factor is 0.5.
/// So if a short signal is expected to be 100 ms, correct decoding signal can be anywhere between
/// 50 ms to 150 ms, but not 10 ms.
///
/// Default precision is Lazy, as it's the most human friendly precision.
///
/// Farnsworth precision means extra delays will be added to spaces between characters and
/// words but character decoding speed is not affected.
/// Difference between current decoding speed and a reduced decoding speed will determine
/// the length of the delays. The reduced decoding speed is determined by the factor value
/// passed to the enum variant Farnsworth. This value will be multiplied by the current speed
/// to find a reduction in overall speed. Factor value is clamped between 0.01 and 0.99.
#[derive(Debug, PartialEq)]
pub enum Precision {
Lazy,
Accurate,
Farnsworth(f32),
}
use Precision::{Lazy, Accurate, Farnsworth};
type MilliSeconds = u16;
#[derive(PartialEq, Copy, Clone, Debug)]
enum SignalDuration {
Empty,
Short(MilliSeconds),
Long(MilliSeconds),
Other(MilliSeconds),
}
use SignalDuration::{Empty as SDEmpty, Short as SDShort, Long as SDLong, Other as SDOther};
// Signal buffer length is morse array length + 1, because we need to be able to
// resolve a character ending long signal (either 3x or word space 7x) at the end
// of each character.
const SIGNAL_BUFFER_LENGTH: usize = MORSE_ARRAY_LENGTH + 1;
type SignalBuffer = [SignalDuration; SIGNAL_BUFFER_LENGTH];
/// This is the builder, or public interface of the decoder using builder pattern.
/// It builds a MorseDecoder which is the concrete implementation and returns it with `build()`.
/// For details on how to use the decoder, refer to [MorseDecoder] documentation.
pub struct Decoder<const MSG_MAX: usize> {
// User defined
precision: Precision,
character_set: CharacterSet,
morse_code_set: MorseCodeSet,
signal_tolerance: f32,
reference_short_ms: MilliSeconds,
message: Message<MSG_MAX>,
// Internal stuff
current_character: MorseCodeArray,
signal_pos: usize,
signal_buffer: SignalBuffer,
}
impl<const MSG_MAX: usize> Default for Decoder<MSG_MAX> {
fn default() -> Self {
Self::new()
}
}
impl<const MSG_MAX: usize> Decoder<MSG_MAX> {
pub fn new() -> Self {
Self {
// User defined
precision: Lazy,
character_set: DEFAULT_CHARACTER_SET,
morse_code_set: DEFAULT_MORSE_CODE_SET,
signal_tolerance: 0.50,
reference_short_ms: 0,
message: Message::default(),
// Internal stuff
current_character: MORSE_DEFAULT_CHAR,
signal_pos: 0,
signal_buffer: [SDEmpty; SIGNAL_BUFFER_LENGTH],
}
}
/// Build decoder with a starting message.
///
/// `edit_pos_end` means we'll continue decoding from the end of this string.
/// If you pass false to it, we'll start from the beginning.
pub fn with_message(mut self, message_str: &str, edit_pos_end: bool) -> Self {
self.message = Message::new(message_str, edit_pos_end, self.message.is_edit_clamped());
self
}
/// Build decoder with an arbitrary editing start position.
///
/// Maybe client code saved the previous editing position to an EEPROM, harddisk, local
/// storage in web and wants to continue from that.
pub fn with_edit_position(mut self, pos: usize) -> Self {
self.message.set_edit_pos(pos);
self
}
/// Set decoder precision.
///
/// * Precision::Lazy is more human friendly,
/// * Precision::Accurate is for learning or a challenge - contest.
/// * Precision::Farnsworth means extra delays will be added to spaces between characters and
/// words but intracharacter speed is not affected.
/// Difference between current decoding speed and a reduced decoding speed will determine
/// the length of the delays. The reduced decoding speed is determined by the factor value
/// passed to the enum variant Farnsworth. This value will be multiplied by the current speed
/// to find a reduction in overall speed. Factor value will be clamped between 0.01 and 0.99.
///
/// As an example for Farnsworth precision, let's say
/// client code wants a reduction to half the current speed:
/// ```ignore
/// let decoder = Decoder::new().with_precision(Precision::Farnsworth(0.5)).build();
/// // At this point if our words per minute speed is 20,
/// // overall transmission speed will be reduced to 10 WPM
/// // preserving the character speed at 20 WPM but distributing
/// // the difference in time among spaces between chars and words.
/// ```
pub fn with_precision(mut self, precision: Precision) -> Self {
if let Farnsworth(factor) = precision {
self.precision = Farnsworth(factor.clamp(0.01, 0.99));
} else {
self.precision = precision;
}
self
}
/// Use a different character set than default english alphabet.
///
/// This can be helpful to create a message with trivial encryption.
/// Letters can be shuffled for example. With utf-8 feature flag, a somewhat
/// stronger encryption can be used. These kind of encryptions can
/// easily be broken with powerful algorithms and AI.
/// **DON'T** use it for secure communication.
pub fn with_character_set(mut self, character_set: CharacterSet) -> Self {
self.character_set = character_set;
self
}
/// Use a different morse code set than the default.
///
/// It's mainly useful for a custom morse code set with utf8
/// character sets. Different alphabets have different corresponding morse code sets.
pub fn with_morse_code_set(mut self, morse_code_set: MorseCodeSet) -> Self {
self.morse_code_set = morse_code_set;
self
}
/// Use a different signal tolerance range factor than the default 0.5.
///
/// Tolerance factors higher than 0.5 tend to overlap and result in wrong decoding.
/// You can lower this value though for stricter morse signalling.
/// In any case the value will be clamped between 0.0 and 1.0 so values
/// higher than 1.0 will be 1.0.
pub fn with_signal_tolerance(mut self, signal_tolerance: f32) -> Self {
self.signal_tolerance = signal_tolerance.clamp(0.0, 1.0);
self
}
/// Change initial reference short signal duration from 0 to some other value.
///
/// This value will determine the reference durations of signal types (short, long or very long).
/// The value will be multiplied by LONG_SIGNAL_MULTIPLIER (x3) and WORD_SPACE_MULTIPLIER (x7) to
/// determine long signals and very long word separator signals.
/// Default value of 0 means MorseDecoder will try to calculate the reference short duration
/// from incoming signals. This might not work well if the message starts with a 'T'.
pub fn with_reference_short_ms(mut self, reference_short_ms: MilliSeconds) -> Self {
self.reference_short_ms = reference_short_ms;
self
}
/// Change the wrapping behaviour of message position to clamping.
///
/// This will prevent the position cycling back to 0 when overflows or
/// jumping forward to max when falls below 0. Effectively limiting the position
/// to move within the message length from 0 to message length maximum without jumps.
///
/// If at one point you want to change it back to wrapping:
///
/// ```ignore
/// decoder.message.set_edit_position_clamp(false);
/// ```
pub fn with_message_pos_clamping(mut self) -> Self {
self.message.set_edit_position_clamp(true);
self
}
/// Build and get yourself a shiny new [MorseDecoder].
///
/// The ring is yours now...
pub fn build(self) -> MorseDecoder<MSG_MAX> {
let Decoder {
precision,
character_set,
morse_code_set,
signal_tolerance,
reference_short_ms,
message,
current_character,
signal_pos,
signal_buffer,
} = self;
MorseDecoder::<MSG_MAX> {
precision,
character_set,
morse_code_set,
signal_tolerance,
reference_short_ms,
message,
current_character,
signal_pos,
signal_buffer,
}
}
}
/// This is the concrete implementation of the decoder.
///
/// It doesn't have a new function, or public data members,
/// so to get an instance of it, use public builder interface [Decoder].
pub struct MorseDecoder<const MSG_MAX: usize> {
// User defined
precision: Precision,
character_set: CharacterSet,
morse_code_set: MorseCodeSet,
signal_tolerance: f32,
reference_short_ms: MilliSeconds,
pub message: Message<MSG_MAX>,
// Internal stuff
current_character: MorseCodeArray,
signal_pos: usize,
signal_buffer: SignalBuffer,
}
// Private stuff.. Don' look at it
impl<const MSG_MAX: usize> MorseDecoder<MSG_MAX> {
fn get_char_from_morse_char(&self, morse_char: &MorseCodeArray) -> Character {
let index = self.morse_code_set
.iter()
.position(|mchar| mchar == morse_char);
if let Some(i) = index {
self.character_set[i]
} else {
DECODING_ERROR_CHAR
}
}
fn add_to_signal_buffer(&mut self, signal_duration: SignalDuration) {
if self.signal_pos < SIGNAL_BUFFER_LENGTH {
self.signal_buffer[self.signal_pos] = signal_duration;
self.signal_pos += 1;
}
}
fn decode_signal_buffer(&mut self) -> MorseCodeArray {
let mut morse_array: MorseCodeArray = MORSE_DEFAULT_CHAR;
//DBG
//println!("Signal buffer decoding: {:?}", self.signal_buffer);
self.signal_buffer
.iter()
.take(6)
.enumerate()
.for_each(|(i, signal)| match signal {
SDShort(_) => {
morse_array[i] = Some(S);
}
SDLong(_) => morse_array[i] = Some(L),
_ => {}
});
morse_array
}
fn resolve_signal_duration(
&mut self,
duration_ms: MilliSeconds,
tolerance_range: &RangeInclusive<MilliSeconds>,
is_high: bool,
) -> SignalDuration {
let resolve_accurate_or_farnsworth = |long_ms: MilliSeconds| -> SignalDuration {
if tolerance_range.contains(&self.reference_short_ms) {
SDShort(duration_ms)
} else if tolerance_range.contains(&long_ms) {
SDLong(duration_ms)
} else {
SDOther(duration_ms)
}
};
match self.precision {
Lazy => {
let short_tolerance_range = self.signal_tolerance_range(self.reference_short_ms);
let short_range_end = short_tolerance_range.end() + 50; // 50 ms padding gives better results with humans
if (0u16..short_range_end).contains(&duration_ms) {
SDShort(duration_ms)
} else if (short_range_end..self.word_space_ms()).contains(&duration_ms) {
SDLong(duration_ms)
} else {
SDOther(duration_ms)
}
}
Accurate => {
resolve_accurate_or_farnsworth(self.long_signal_ms())
}
Farnsworth(factor) => {
if is_high {
resolve_accurate_or_farnsworth(self.long_signal_ms())
} else {
let farnsworth_long = self.calculate_farnsworth_short(factor) * LONG_SIGNAL_MULTIPLIER;
resolve_accurate_or_farnsworth(farnsworth_long)
}
}
}
}
fn signal_tolerance_range(&self, duration_ms: MilliSeconds) -> RangeInclusive<MilliSeconds> {
let diff = (duration_ms as f32 * self.signal_tolerance) as MilliSeconds;
duration_ms - diff..=duration_ms.saturating_add(diff)
}
fn reset_character(&mut self) {
self.signal_buffer = [SDEmpty; SIGNAL_BUFFER_LENGTH];
self.signal_pos = 0;
self.current_character = MORSE_DEFAULT_CHAR;
}
fn update_reference_short_ms(&mut self, duration_ms: MilliSeconds) {
self.reference_short_ms = duration_ms;
}
fn long_signal_ms(&self) -> MilliSeconds {
self.reference_short_ms * LONG_SIGNAL_MULTIPLIER
}
fn word_space_ms(&self) -> MilliSeconds {
let multiplier = match self.precision {
// Adding some padding to the end of word space to aid the lazy sleazy operator
Lazy => WORD_SPACE_MULTIPLIER + 1,
Accurate => WORD_SPACE_MULTIPLIER,
// Early return if we have a Farnsworth precision.
// We calculate the word space from a slower
// farnsworth short duration and return it.
Farnsworth(factor) => {
return self.calculate_farnsworth_short(factor) * WORD_SPACE_MULTIPLIER
}
};
self.reference_short_ms * multiplier
}
fn calculate_farnsworth_short(&self, speed_reduction_factor: f32) -> MilliSeconds {
// WPM stands for Words per Minute
let current_wpm = self.get_wpm() as f32;
//println!("FARNSWORTH: current WPM: {}", current_wpm);
let reduced_wpm = current_wpm * speed_reduction_factor;
//println!("FARNSWORTH: reduced WPM: {}", reduced_wpm);
let delay_time_ms = (((60.0 * current_wpm) - (37.2 * reduced_wpm)) / (current_wpm * reduced_wpm)) * 1000.0;
//println!("FARNSWORTH: current reference short: {}", self.reference_short_ms);
//println!("FARNSWORTH: delay time total: {} and short: {}", delay_time_ms, (delay_time_ms / 19.0) as MilliSeconds);
(delay_time_ms / 19.0) as MilliSeconds
}
}
// Public API for the masses
impl<const MSG_MAX: usize> MorseDecoder<MSG_MAX> {
/// Returns currently resolved reference short signal duration.
///
/// Reference short signal is resolved continuously by the decoder as signal events pour in.
/// As longer signal durations are calculated by multiplying this value,
/// it might be useful for the client code.
pub fn get_reference_short(&self) -> MilliSeconds {
self.reference_short_ms
}
/// Returns the current signal entry speed in
/// Words Per Minute format.
pub fn get_wpm(&self) -> u16 {
(1.2 / (self.reference_short_ms as f32 / 1000.0)) as u16
}
/// Returns last decoded character for easy access.
pub fn get_last_decoded_char(&self) -> Character {
self.message.get_last_changed_char()
}
/// Directly add a prepared signal to the character.
///
/// Signal duration resolving is done by the client code, or you're using a prepared signal.
pub fn add_signal_to_character(&mut self, signal: Option<MorseSignal>) {
if self.signal_pos < MORSE_ARRAY_LENGTH {
self.current_character[self.signal_pos] = signal;
self.signal_pos += 1;
}
}
/// Add current decoded character to the message.
///
/// This happens automatically when using `signal_event` calls.
/// Use this with `add_signal_to_character` directly with
/// prepared [MorseSignal] enums.
pub fn add_current_char_to_message(&mut self) {
if self.message.get_edit_pos() < MSG_MAX {
let ch = self.get_char_from_morse_char(&self.current_character);
self.message.add_char(ch);
// If message position is clamping then this should not do anything.
// at the end of message position.
// If wrapping then it should reset the position to 0, so above condition
// should pass next time.
self.message.shift_edit_right();
self.reset_character();
}
}
/// Manually end a sequence of signals.
///
/// This decodes the current character and moves to the next one.
/// With end_word flag it will optionally add a space after it.
/// Especially useful when client code can't determine if signal
/// input by the operator ended, because no other high signal is
/// following the low signal at the end. At that point a separate button
/// or whatever can be used to trigger this function.
pub fn signal_event_end(&mut self, end_word: bool) {
self.current_character = self.decode_signal_buffer();
self.add_current_char_to_message();
if end_word {
self.current_character = MORSE_DEFAULT_CHAR;
self.add_current_char_to_message();
}
}
/// Send signal events to the decoder, filling signal buffer one event at a time.
///
/// When a character ending long space signal or a word ending long space is sent,
/// signal buffer will be decoded automatically and character will be added to message.
/// Note that if signal input itself has ended, oftentimes there's no way to send that signal.
/// Use `signal_event_end` at that point to manually end the character.
pub fn signal_event(&mut self, duration_ms: MilliSeconds, is_high: bool) {
let tolerance_range = self.signal_tolerance_range(duration_ms);
match self.signal_pos {
// Signal is the first in the series.
// Since this is the first signal we encounter, we'll treat it as if it's a short, when
// reference_short_ms == 0, otherwise try to resolve signal duration based on
// reference short learned from previous letters or based on
// initial_reference_short_ms provided to the constructor.
// If we have set it short preemptively, we later on check if this first short turns out to be long instead
// (see one of the match arms). We'll update the first buffer item with the correct value then don't worry.
0 => {
if is_high {
//DBG
//println!("START CHARACTER -----------------------");
if self.reference_short_ms == 0 {
self.add_to_signal_buffer(SDShort(duration_ms));
self.update_reference_short_ms(duration_ms);
//DBG
//println!("Initial ref short is set to {}", duration_ms);
} else {
let resolved_duration = self.resolve_signal_duration(duration_ms, &tolerance_range, is_high);
//DBG
//println!("\tINTIAL HIGH: tolerance range: {:?}, position is: {}, resolved duration: {:?}, ref short is: {}", tolerance_range, pos, resolved_duration, self.reference_short_ms);
self.add_to_signal_buffer(resolved_duration);
}
} else {
// Do nothing if we receive a low signal at the start of a series.
// This happens when event engine of the client code sends low signals
// inadvertently perhaps while idling or outright sends a wrong low signal at the start of a letter
// which is rude.
}
}
// Signal is not high. It can be one of three things at this point:
// 1. It's a short duration space signal (space between two signals)
// 2. It's a long duration space. At this point we decode the entire signal buffer and
// add resulting character to the message
// 3. It's a very long signal (x7 or more) to divide two words in the message. So
// we check the signal buffer and add the character, as well as a space after it.
_pos if !is_high => {
if duration_ms < self.reference_short_ms && !tolerance_range.contains(&self.reference_short_ms) {
//println!("Updating reference short to {}", duration_ms);
self.update_reference_short_ms(duration_ms);
}
let resolved_duration = self.resolve_signal_duration(duration_ms, &tolerance_range, is_high);
//DBG
//println!("LOW SIGNAL: tolerance range: {:?}, position is: {}, resolved duration: {:?}, ref short is: {}", tolerance_range, _pos, resolved_duration, self.reference_short_ms);
match resolved_duration {
SDLong(_) => {
//DBG
//println!("END CHARACTER --------------");
self.signal_event_end(false);
}
SDOther(ms) if ms >= self.word_space_ms() => {
//DBG
//println!("END WORD --------------");
self.signal_event_end(true);
}
_ => (),
}
}
// Signal is not the first in a series and there are signals to be fed to the buffer.
// At this point signal is high and we try to resolve signal duration and save the signal to character.
// Also we check if the first duration in the array was wrongly saved as short but
// should be long instead. We fix it to long duration if it's wrong.
// The reason why we check at this position starting from index 2+ is that
// we get a better calibrated short signal from the low signal before it (index 1)
pos if pos < SIGNAL_BUFFER_LENGTH && is_high => {
let resolved_duration = self.resolve_signal_duration(duration_ms, &tolerance_range, is_high);
//DBG
//println!("\tHIGH SIGNAL: tolerance range: {:?}, position is: {}, resolved duration: {:?}, ref short is: {}", tolerance_range, pos, resolved_duration, self.reference_short_ms);
self.add_to_signal_buffer(resolved_duration);
if let SDShort(first_duration) = self.signal_buffer[0] {
match resolved_duration {
SDLong(_) => {
// If current signal is long and it's tolerance range contains the
// first short signal, the first short signal should be a long
if tolerance_range.contains(&first_duration) {
self.signal_buffer[0] = SDLong(duration_ms);
}
}
SDShort(_) => {
// This is an edge case we need to handle where the character being
// decoded, has a long high signal as the first signal in it and
// has only short signals after it (including this one). If tolerance range
// of the short signal we just got happens to be in the range of first
// short signal divided by long signal multiplier (by default 3),
// first short signal was indeed a long one, but we missed it.
if tolerance_range.contains(&(first_duration / LONG_SIGNAL_MULTIPLIER)) {
self.signal_buffer[0] = SDLong(duration_ms);
}
}
_ => (),
}
}
}
// This means we got the maximum amount of signals to the buffer, but still couldn't
// decode the character. Either because we never received a character ender low
// signal (3x short space) or a word ending long signal (7x short space)
// or outright couldn't decode them, but hey.
// We put a decoding error character at this point. And move on.
_ => {
//DBG
//println!("We reached the end of buffer and couldn't decode the character. signal_buffer so far is: {:?}", self.signal_buffer);
self.message.add_char(DECODING_ERROR_CHAR);
self.message.shift_edit_right();
self.reset_character();
}
}
}
}