msiz_rustc_ap_graphviz/
lib.rs

1//! Generate files suitable for use with [Graphviz](http://www.graphviz.org/)
2//!
3//! The `render` function generates output (e.g., an `output.dot` file) for
4//! use with [Graphviz](http://www.graphviz.org/) by walking a labeled
5//! graph. (Graphviz can then automatically lay out the nodes and edges
6//! of the graph, and also optionally render the graph as an image or
7//! other [output formats](
8//! http://www.graphviz.org/content/output-formats), such as SVG.)
9//!
10//! Rather than impose some particular graph data structure on clients,
11//! this library exposes two traits that clients can implement on their
12//! own structs before handing them over to the rendering function.
13//!
14//! Note: This library does not yet provide access to the full
15//! expressiveness of the [DOT language](
16//! http://www.graphviz.org/doc/info/lang.html). For example, there are
17//! many [attributes](http://www.graphviz.org/content/attrs) related to
18//! providing layout hints (e.g., left-to-right versus top-down, which
19//! algorithm to use, etc). The current intention of this library is to
20//! emit a human-readable .dot file with very regular structure suitable
21//! for easy post-processing.
22//!
23//! # Examples
24//!
25//! The first example uses a very simple graph representation: a list of
26//! pairs of ints, representing the edges (the node set is implicit).
27//! Each node label is derived directly from the int representing the node,
28//! while the edge labels are all empty strings.
29//!
30//! This example also illustrates how to use `Cow<[T]>` to return
31//! an owned vector or a borrowed slice as appropriate: we construct the
32//! node vector from scratch, but borrow the edge list (rather than
33//! constructing a copy of all the edges from scratch).
34//!
35//! The output from this example renders five nodes, with the first four
36//! forming a diamond-shaped acyclic graph and then pointing to the fifth
37//! which is cyclic.
38//!
39//! ```rust
40//! #![feature(rustc_private)]
41//!
42//! use std::io::Write;
43//! use graphviz as dot;
44//!
45//! type Nd = isize;
46//! type Ed = (isize,isize);
47//! struct Edges(Vec<Ed>);
48//!
49//! pub fn render_to<W: Write>(output: &mut W) {
50//!     let edges = Edges(vec![(0,1), (0,2), (1,3), (2,3), (3,4), (4,4)]);
51//!     dot::render(&edges, output).unwrap()
52//! }
53//!
54//! impl<'a> dot::Labeller<'a> for Edges {
55//!     type Node = Nd;
56//!     type Edge = Ed;
57//!     fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example1").unwrap() }
58//!
59//!     fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
60//!         dot::Id::new(format!("N{}", *n)).unwrap()
61//!     }
62//! }
63//!
64//! impl<'a> dot::GraphWalk<'a> for Edges {
65//!     type Node = Nd;
66//!     type Edge = Ed;
67//!     fn nodes(&self) -> dot::Nodes<'a,Nd> {
68//!         // (assumes that |N| \approxeq |E|)
69//!         let &Edges(ref v) = self;
70//!         let mut nodes = Vec::with_capacity(v.len());
71//!         for &(s,t) in v {
72//!             nodes.push(s); nodes.push(t);
73//!         }
74//!         nodes.sort();
75//!         nodes.dedup();
76//!         nodes.into()
77//!     }
78//!
79//!     fn edges(&'a self) -> dot::Edges<'a,Ed> {
80//!         let &Edges(ref edges) = self;
81//!         (&edges[..]).into()
82//!     }
83//!
84//!     fn source(&self, e: &Ed) -> Nd { let &(s,_) = e; s }
85//!
86//!     fn target(&self, e: &Ed) -> Nd { let &(_,t) = e; t }
87//! }
88//!
89//! # pub fn main() { render_to(&mut Vec::new()) }
90//! ```
91//!
92//! ```no_run
93//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
94//! pub fn main() {
95//!     use std::fs::File;
96//!     let mut f = File::create("example1.dot").unwrap();
97//!     render_to(&mut f)
98//! }
99//! ```
100//!
101//! Output from first example (in `example1.dot`):
102//!
103//! ```dot
104//! digraph example1 {
105//!     N0[label="N0"];
106//!     N1[label="N1"];
107//!     N2[label="N2"];
108//!     N3[label="N3"];
109//!     N4[label="N4"];
110//!     N0 -> N1[label=""];
111//!     N0 -> N2[label=""];
112//!     N1 -> N3[label=""];
113//!     N2 -> N3[label=""];
114//!     N3 -> N4[label=""];
115//!     N4 -> N4[label=""];
116//! }
117//! ```
118//!
119//! The second example illustrates using `node_label` and `edge_label` to
120//! add labels to the nodes and edges in the rendered graph. The graph
121//! here carries both `nodes` (the label text to use for rendering a
122//! particular node), and `edges` (again a list of `(source,target)`
123//! indices).
124//!
125//! This example also illustrates how to use a type (in this case the edge
126//! type) that shares substructure with the graph: the edge type here is a
127//! direct reference to the `(source,target)` pair stored in the graph's
128//! internal vector (rather than passing around a copy of the pair
129//! itself). Note that this implies that `fn edges(&'a self)` must
130//! construct a fresh `Vec<&'a (usize,usize)>` from the `Vec<(usize,usize)>`
131//! edges stored in `self`.
132//!
133//! Since both the set of nodes and the set of edges are always
134//! constructed from scratch via iterators, we use the `collect()` method
135//! from the `Iterator` trait to collect the nodes and edges into freshly
136//! constructed growable `Vec` values (rather than using `Cow` as in the
137//! first example above).
138//!
139//! The output from this example renders four nodes that make up the
140//! Hasse-diagram for the subsets of the set `{x, y}`. Each edge is
141//! labeled with the &sube; character (specified using the HTML character
142//! entity `&sube`).
143//!
144//! ```rust
145//! #![feature(rustc_private)]
146//!
147//! use std::io::Write;
148//! use graphviz as dot;
149//!
150//! type Nd = usize;
151//! type Ed<'a> = &'a (usize, usize);
152//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
153//!
154//! pub fn render_to<W: Write>(output: &mut W) {
155//!     let nodes = vec!["{x,y}","{x}","{y}","{}"];
156//!     let edges = vec![(0,1), (0,2), (1,3), (2,3)];
157//!     let graph = Graph { nodes: nodes, edges: edges };
158//!
159//!     dot::render(&graph, output).unwrap()
160//! }
161//!
162//! impl<'a> dot::Labeller<'a> for Graph {
163//!     type Node = Nd;
164//!     type Edge = Ed<'a>;
165//!     fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example2").unwrap() }
166//!     fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
167//!         dot::Id::new(format!("N{}", n)).unwrap()
168//!     }
169//!     fn node_label<'b>(&'b self, n: &Nd) -> dot::LabelText<'b> {
170//!         dot::LabelText::LabelStr(self.nodes[*n].into())
171//!     }
172//!     fn edge_label<'b>(&'b self, _: &Ed) -> dot::LabelText<'b> {
173//!         dot::LabelText::LabelStr("&sube;".into())
174//!     }
175//! }
176//!
177//! impl<'a> dot::GraphWalk<'a> for Graph {
178//!     type Node = Nd;
179//!     type Edge = Ed<'a>;
180//!     fn nodes(&self) -> dot::Nodes<'a,Nd> { (0..self.nodes.len()).collect() }
181//!     fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { self.edges.iter().collect() }
182//!     fn source(&self, e: &Ed) -> Nd { let & &(s,_) = e; s }
183//!     fn target(&self, e: &Ed) -> Nd { let & &(_,t) = e; t }
184//! }
185//!
186//! # pub fn main() { render_to(&mut Vec::new()) }
187//! ```
188//!
189//! ```no_run
190//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
191//! pub fn main() {
192//!     use std::fs::File;
193//!     let mut f = File::create("example2.dot").unwrap();
194//!     render_to(&mut f)
195//! }
196//! ```
197//!
198//! The third example is similar to the second, except now each node and
199//! edge now carries a reference to the string label for each node as well
200//! as that node's index. (This is another illustration of how to share
201//! structure with the graph itself, and why one might want to do so.)
202//!
203//! The output from this example is the same as the second example: the
204//! Hasse-diagram for the subsets of the set `{x, y}`.
205//!
206//! ```rust
207//! #![feature(rustc_private)]
208//!
209//! use std::io::Write;
210//! use graphviz as dot;
211//!
212//! type Nd<'a> = (usize, &'a str);
213//! type Ed<'a> = (Nd<'a>, Nd<'a>);
214//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
215//!
216//! pub fn render_to<W: Write>(output: &mut W) {
217//!     let nodes = vec!["{x,y}","{x}","{y}","{}"];
218//!     let edges = vec![(0,1), (0,2), (1,3), (2,3)];
219//!     let graph = Graph { nodes: nodes, edges: edges };
220//!
221//!     dot::render(&graph, output).unwrap()
222//! }
223//!
224//! impl<'a> dot::Labeller<'a> for Graph {
225//!     type Node = Nd<'a>;
226//!     type Edge = Ed<'a>;
227//!     fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example3").unwrap() }
228//!     fn node_id(&'a self, n: &Nd<'a>) -> dot::Id<'a> {
229//!         dot::Id::new(format!("N{}", n.0)).unwrap()
230//!     }
231//!     fn node_label<'b>(&'b self, n: &Nd<'b>) -> dot::LabelText<'b> {
232//!         let &(i, _) = n;
233//!         dot::LabelText::LabelStr(self.nodes[i].into())
234//!     }
235//!     fn edge_label<'b>(&'b self, _: &Ed<'b>) -> dot::LabelText<'b> {
236//!         dot::LabelText::LabelStr("&sube;".into())
237//!     }
238//! }
239//!
240//! impl<'a> dot::GraphWalk<'a> for Graph {
241//!     type Node = Nd<'a>;
242//!     type Edge = Ed<'a>;
243//!     fn nodes(&'a self) -> dot::Nodes<'a,Nd<'a>> {
244//!         self.nodes.iter().map(|s| &s[..]).enumerate().collect()
245//!     }
246//!     fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> {
247//!         self.edges.iter()
248//!             .map(|&(i,j)|((i, &self.nodes[i][..]),
249//!                           (j, &self.nodes[j][..])))
250//!             .collect()
251//!     }
252//!     fn source(&self, e: &Ed<'a>) -> Nd<'a> { let &(s,_) = e; s }
253//!     fn target(&self, e: &Ed<'a>) -> Nd<'a> { let &(_,t) = e; t }
254//! }
255//!
256//! # pub fn main() { render_to(&mut Vec::new()) }
257//! ```
258//!
259//! ```no_run
260//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
261//! pub fn main() {
262//!     use std::fs::File;
263//!     let mut f = File::create("example3.dot").unwrap();
264//!     render_to(&mut f)
265//! }
266//! ```
267//!
268//! # References
269//!
270//! * [Graphviz](http://www.graphviz.org/)
271//!
272//! * [DOT language](http://www.graphviz.org/doc/info/lang.html)
273
274#![doc(html_root_url = "https://doc.rust-lang.org/nightly/",
275       test(attr(allow(unused_variables), deny(warnings))))]
276
277#![feature(rustc_private, nll)]
278
279use LabelText::*;
280
281use std::borrow::Cow;
282use std::io::prelude::*;
283use std::io;
284
285/// The text for a graphviz label on a node or edge.
286pub enum LabelText<'a> {
287    /// This kind of label preserves the text directly as is.
288    ///
289    /// Occurrences of backslashes (`\`) are escaped, and thus appear
290    /// as backslashes in the rendered label.
291    LabelStr(Cow<'a, str>),
292
293    /// This kind of label uses the graphviz label escString type:
294    /// <http://www.graphviz.org/content/attrs#kescString>
295    ///
296    /// Occurrences of backslashes (`\`) are not escaped; instead they
297    /// are interpreted as initiating an escString escape sequence.
298    ///
299    /// Escape sequences of particular interest: in addition to `\n`
300    /// to break a line (centering the line preceding the `\n`), there
301    /// are also the escape sequences `\l` which left-justifies the
302    /// preceding line and `\r` which right-justifies it.
303    EscStr(Cow<'a, str>),
304
305    /// This uses a graphviz [HTML string label][html]. The string is
306    /// printed exactly as given, but between `<` and `>`. **No
307    /// escaping is performed.**
308    ///
309    /// [html]: http://www.graphviz.org/content/node-shapes#html
310    HtmlStr(Cow<'a, str>),
311}
312
313/// The style for a node or edge.
314/// See <http://www.graphviz.org/doc/info/attrs.html#k:style> for descriptions.
315/// Note that some of these are not valid for edges.
316#[derive(Copy, Clone, PartialEq, Eq, Debug)]
317pub enum Style {
318    None,
319    Solid,
320    Dashed,
321    Dotted,
322    Bold,
323    Rounded,
324    Diagonals,
325    Filled,
326    Striped,
327    Wedged,
328}
329
330impl Style {
331    pub fn as_slice(self) -> &'static str {
332        match self {
333            Style::None => "",
334            Style::Solid => "solid",
335            Style::Dashed => "dashed",
336            Style::Dotted => "dotted",
337            Style::Bold => "bold",
338            Style::Rounded => "rounded",
339            Style::Diagonals => "diagonals",
340            Style::Filled => "filled",
341            Style::Striped => "striped",
342            Style::Wedged => "wedged",
343        }
344    }
345}
346
347// There is a tension in the design of the labelling API.
348//
349// For example, I considered making a `Labeller<T>` trait that
350// provides labels for `T`, and then making the graph type `G`
351// implement `Labeller<Node>` and `Labeller<Edge>`. However, this is
352// not possible without functional dependencies. (One could work
353// around that, but I did not explore that avenue heavily.)
354//
355// Another approach that I actually used for a while was to make a
356// `Label<Context>` trait that is implemented by the client-specific
357// Node and Edge types (as well as an implementation on Graph itself
358// for the overall name for the graph). The main disadvantage of this
359// second approach (compared to having the `G` type parameter
360// implement a Labelling service) that I have encountered is that it
361// makes it impossible to use types outside of the current crate
362// directly as Nodes/Edges; you need to wrap them in newtype'd
363// structs. See e.g., the `No` and `Ed` structs in the examples. (In
364// practice clients using a graph in some other crate would need to
365// provide some sort of adapter shim over the graph anyway to
366// interface with this library).
367//
368// Another approach would be to make a single `Labeller<N,E>` trait
369// that provides three methods (graph_label, node_label, edge_label),
370// and then make `G` implement `Labeller<N,E>`. At first this did not
371// appeal to me, since I had thought I would need separate methods on
372// each data variant for dot-internal identifiers versus user-visible
373// labels. However, the identifier/label distinction only arises for
374// nodes; graphs themselves only have identifiers, and edges only have
375// labels.
376//
377// So in the end I decided to use the third approach described above.
378
379/// `Id` is a Graphviz `ID`.
380pub struct Id<'a> {
381    name: Cow<'a, str>,
382}
383
384impl<'a> Id<'a> {
385    /// Creates an `Id` named `name`.
386    ///
387    /// The caller must ensure that the input conforms to an
388    /// identifier format: it must be a non-empty string made up of
389    /// alphanumeric or underscore characters, not beginning with a
390    /// digit (i.e., the regular expression `[a-zA-Z_][a-zA-Z_0-9]*`).
391    ///
392    /// (Note: this format is a strict subset of the `ID` format
393    /// defined by the DOT language. This function may change in the
394    /// future to accept a broader subset, or the entirety, of DOT's
395    /// `ID` format.)
396    ///
397    /// Passing an invalid string (containing spaces, brackets,
398    /// quotes, ...) will return an empty `Err` value.
399    pub fn new<Name: Into<Cow<'a, str>>>(name: Name) -> Result<Id<'a>, ()> {
400        let name = name.into();
401        match name.chars().next() {
402            Some(c) if c.is_ascii_alphabetic() || c == '_' => {}
403            _ => return Err(()),
404        }
405        if !name.chars().all(|c| c.is_ascii_alphanumeric() || c == '_' ) {
406            return Err(());
407        }
408
409        Ok(Id { name })
410    }
411
412    pub fn as_slice(&'a self) -> &'a str {
413        &*self.name
414    }
415
416    pub fn name(self) -> Cow<'a, str> {
417        self.name
418    }
419}
420
421/// Each instance of a type that implements `Label<C>` maps to a
422/// unique identifier with respect to `C`, which is used to identify
423/// it in the generated .dot file. They can also provide more
424/// elaborate (and non-unique) label text that is used in the graphviz
425/// rendered output.
426
427/// The graph instance is responsible for providing the DOT compatible
428/// identifiers for the nodes and (optionally) rendered labels for the nodes and
429/// edges, as well as an identifier for the graph itself.
430pub trait Labeller<'a> {
431    type Node;
432    type Edge;
433
434    /// Must return a DOT compatible identifier naming the graph.
435    fn graph_id(&'a self) -> Id<'a>;
436
437    /// Maps `n` to a unique identifier with respect to `self`. The
438    /// implementor is responsible for ensuring that the returned name
439    /// is a valid DOT identifier.
440    fn node_id(&'a self, n: &Self::Node) -> Id<'a>;
441
442    /// Maps `n` to one of the [graphviz `shape` names][1]. If `None`
443    /// is returned, no `shape` attribute is specified.
444    ///
445    /// [1]: http://www.graphviz.org/content/node-shapes
446    fn node_shape(&'a self, _node: &Self::Node) -> Option<LabelText<'a>> {
447        None
448    }
449
450    /// Maps `n` to a label that will be used in the rendered output.
451    /// The label need not be unique, and may be the empty string; the
452    /// default is just the output from `node_id`.
453    fn node_label(&'a self, n: &Self::Node) -> LabelText<'a> {
454        LabelStr(self.node_id(n).name)
455    }
456
457    /// Maps `e` to a label that will be used in the rendered output.
458    /// The label need not be unique, and may be the empty string; the
459    /// default is in fact the empty string.
460    fn edge_label(&'a self, _e: &Self::Edge) -> LabelText<'a> {
461        LabelStr("".into())
462    }
463
464    /// Maps `n` to a style that will be used in the rendered output.
465    fn node_style(&'a self, _n: &Self::Node) -> Style {
466        Style::None
467    }
468
469    /// Maps `e` to a style that will be used in the rendered output.
470    fn edge_style(&'a self, _e: &Self::Edge) -> Style {
471        Style::None
472    }
473}
474
475/// Escape tags in such a way that it is suitable for inclusion in a
476/// Graphviz HTML label.
477pub fn escape_html(s: &str) -> String {
478    s.replace("&", "&amp;")
479     .replace("\"", "&quot;")
480     .replace("<", "&lt;")
481     .replace(">", "&gt;")
482}
483
484impl<'a> LabelText<'a> {
485    pub fn label<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
486        LabelStr(s.into())
487    }
488
489    pub fn escaped<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
490        EscStr(s.into())
491    }
492
493    pub fn html<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
494        HtmlStr(s.into())
495    }
496
497    fn escape_char<F>(c: char, mut f: F)
498        where F: FnMut(char)
499    {
500        match c {
501            // not escaping \\, since Graphviz escString needs to
502            // interpret backslashes; see EscStr above.
503            '\\' => f(c),
504            _ => {
505                for c in c.escape_default() {
506                    f(c)
507                }
508            }
509        }
510    }
511    fn escape_str(s: &str) -> String {
512        let mut out = String::with_capacity(s.len());
513        for c in s.chars() {
514            LabelText::escape_char(c, |c| out.push(c));
515        }
516        out
517    }
518
519    /// Renders text as string suitable for a label in a .dot file.
520    /// This includes quotes or suitable delimiters.
521    pub fn to_dot_string(&self) -> String {
522        match *self {
523            LabelStr(ref s) => format!("\"{}\"", s.escape_default()),
524            EscStr(ref s) => format!("\"{}\"", LabelText::escape_str(&s)),
525            HtmlStr(ref s) => format!("<{}>", s),
526        }
527    }
528
529    /// Decomposes content into string suitable for making EscStr that
530    /// yields same content as self. The result obeys the law
531    /// render(`lt`) == render(`EscStr(lt.pre_escaped_content())`) for
532    /// all `lt: LabelText`.
533    fn pre_escaped_content(self) -> Cow<'a, str> {
534        match self {
535            EscStr(s) => s,
536            LabelStr(s) => {
537                if s.contains('\\') {
538                    (&*s).escape_default().to_string().into()
539                } else {
540                    s
541                }
542            }
543            HtmlStr(s) => s,
544        }
545    }
546
547    /// Puts `prefix` on a line above this label, with a blank line separator.
548    pub fn prefix_line(self, prefix: LabelText<'_>) -> LabelText<'static> {
549        prefix.suffix_line(self)
550    }
551
552    /// Puts `suffix` on a line below this label, with a blank line separator.
553    pub fn suffix_line(self, suffix: LabelText<'_>) -> LabelText<'static> {
554        let mut prefix = self.pre_escaped_content().into_owned();
555        let suffix = suffix.pre_escaped_content();
556        prefix.push_str(r"\n\n");
557        prefix.push_str(&suffix);
558        EscStr(prefix.into())
559    }
560}
561
562pub type Nodes<'a,N> = Cow<'a,[N]>;
563pub type Edges<'a,E> = Cow<'a,[E]>;
564
565// (The type parameters in GraphWalk should be associated items,
566// when/if Rust supports such.)
567
568/// GraphWalk is an abstraction over a directed graph = (nodes,edges)
569/// made up of node handles `N` and edge handles `E`, where each `E`
570/// can be mapped to its source and target nodes.
571///
572/// The lifetime parameter `'a` is exposed in this trait (rather than
573/// introduced as a generic parameter on each method declaration) so
574/// that a client impl can choose `N` and `E` that have substructure
575/// that is bound by the self lifetime `'a`.
576///
577/// The `nodes` and `edges` method each return instantiations of
578/// `Cow<[T]>` to leave implementors the freedom to create
579/// entirely new vectors or to pass back slices into internally owned
580/// vectors.
581pub trait GraphWalk<'a> {
582    type Node: Clone;
583    type Edge: Clone;
584
585    /// Returns all the nodes in this graph.
586    fn nodes(&'a self) -> Nodes<'a, Self::Node>;
587    /// Returns all of the edges in this graph.
588    fn edges(&'a self) -> Edges<'a, Self::Edge>;
589    /// The source node for `edge`.
590    fn source(&'a self, edge: &Self::Edge) -> Self::Node;
591    /// The target node for `edge`.
592    fn target(&'a self, edge: &Self::Edge) -> Self::Node;
593}
594
595#[derive(Copy, Clone, PartialEq, Eq, Debug)]
596pub enum RenderOption {
597    NoEdgeLabels,
598    NoNodeLabels,
599    NoEdgeStyles,
600    NoNodeStyles,
601}
602
603/// Returns vec holding all the default render options.
604pub fn default_options() -> Vec<RenderOption> {
605    vec![]
606}
607
608/// Renders directed graph `g` into the writer `w` in DOT syntax.
609/// (Simple wrapper around `render_opts` that passes a default set of options.)
610pub fn render<'a,N,E,G,W>(g: &'a G, w: &mut W) -> io::Result<()>
611    where N: Clone + 'a,
612          E: Clone + 'a,
613          G: Labeller<'a, Node=N, Edge=E> + GraphWalk<'a, Node=N, Edge=E>,
614          W: Write
615{
616    render_opts(g, w, &[])
617}
618
619/// Renders directed graph `g` into the writer `w` in DOT syntax.
620/// (Main entry point for the library.)
621pub fn render_opts<'a, N, E, G, W>(g: &'a G,
622                                   w: &mut W,
623                                   options: &[RenderOption])
624                                   -> io::Result<()>
625    where N: Clone + 'a,
626          E: Clone + 'a,
627          G: Labeller<'a, Node=N, Edge=E> + GraphWalk<'a, Node=N, Edge=E>,
628          W: Write
629{
630    writeln!(w, "digraph {} {{", g.graph_id().as_slice())?;
631    for n in g.nodes().iter() {
632        write!(w, "    ")?;
633        let id = g.node_id(n);
634
635        let escaped = &g.node_label(n).to_dot_string();
636
637        let mut text = Vec::new();
638        write!(text, "{}", id.as_slice()).unwrap();
639
640        if !options.contains(&RenderOption::NoNodeLabels) {
641            write!(text, "[label={}]", escaped).unwrap();
642        }
643
644        let style = g.node_style(n);
645        if !options.contains(&RenderOption::NoNodeStyles) && style != Style::None {
646            write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
647        }
648
649        if let Some(s) = g.node_shape(n) {
650            write!(text, "[shape={}]", &s.to_dot_string()).unwrap();
651        }
652
653        writeln!(text, ";").unwrap();
654        w.write_all(&text[..])?;
655    }
656
657    for e in g.edges().iter() {
658        let escaped_label = &g.edge_label(e).to_dot_string();
659        write!(w, "    ")?;
660        let source = g.source(e);
661        let target = g.target(e);
662        let source_id = g.node_id(&source);
663        let target_id = g.node_id(&target);
664
665        let mut text = Vec::new();
666        write!(text, "{} -> {}", source_id.as_slice(), target_id.as_slice()).unwrap();
667
668        if !options.contains(&RenderOption::NoEdgeLabels) {
669            write!(text, "[label={}]", escaped_label).unwrap();
670        }
671
672        let style = g.edge_style(e);
673        if !options.contains(&RenderOption::NoEdgeStyles) && style != Style::None {
674            write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
675        }
676
677        writeln!(text, ";").unwrap();
678        w.write_all(&text[..])?;
679    }
680
681    writeln!(w, "}}")
682}
683
684#[cfg(test)]
685mod tests;