msiz_rustc_ap_graphviz/lib.rs
1//! Generate files suitable for use with [Graphviz](http://www.graphviz.org/)
2//!
3//! The `render` function generates output (e.g., an `output.dot` file) for
4//! use with [Graphviz](http://www.graphviz.org/) by walking a labeled
5//! graph. (Graphviz can then automatically lay out the nodes and edges
6//! of the graph, and also optionally render the graph as an image or
7//! other [output formats](
8//! http://www.graphviz.org/content/output-formats), such as SVG.)
9//!
10//! Rather than impose some particular graph data structure on clients,
11//! this library exposes two traits that clients can implement on their
12//! own structs before handing them over to the rendering function.
13//!
14//! Note: This library does not yet provide access to the full
15//! expressiveness of the [DOT language](
16//! http://www.graphviz.org/doc/info/lang.html). For example, there are
17//! many [attributes](http://www.graphviz.org/content/attrs) related to
18//! providing layout hints (e.g., left-to-right versus top-down, which
19//! algorithm to use, etc). The current intention of this library is to
20//! emit a human-readable .dot file with very regular structure suitable
21//! for easy post-processing.
22//!
23//! # Examples
24//!
25//! The first example uses a very simple graph representation: a list of
26//! pairs of ints, representing the edges (the node set is implicit).
27//! Each node label is derived directly from the int representing the node,
28//! while the edge labels are all empty strings.
29//!
30//! This example also illustrates how to use `Cow<[T]>` to return
31//! an owned vector or a borrowed slice as appropriate: we construct the
32//! node vector from scratch, but borrow the edge list (rather than
33//! constructing a copy of all the edges from scratch).
34//!
35//! The output from this example renders five nodes, with the first four
36//! forming a diamond-shaped acyclic graph and then pointing to the fifth
37//! which is cyclic.
38//!
39//! ```rust
40//! #![feature(rustc_private)]
41//!
42//! use std::io::Write;
43//! use graphviz as dot;
44//!
45//! type Nd = isize;
46//! type Ed = (isize,isize);
47//! struct Edges(Vec<Ed>);
48//!
49//! pub fn render_to<W: Write>(output: &mut W) {
50//! let edges = Edges(vec![(0,1), (0,2), (1,3), (2,3), (3,4), (4,4)]);
51//! dot::render(&edges, output).unwrap()
52//! }
53//!
54//! impl<'a> dot::Labeller<'a> for Edges {
55//! type Node = Nd;
56//! type Edge = Ed;
57//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example1").unwrap() }
58//!
59//! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
60//! dot::Id::new(format!("N{}", *n)).unwrap()
61//! }
62//! }
63//!
64//! impl<'a> dot::GraphWalk<'a> for Edges {
65//! type Node = Nd;
66//! type Edge = Ed;
67//! fn nodes(&self) -> dot::Nodes<'a,Nd> {
68//! // (assumes that |N| \approxeq |E|)
69//! let &Edges(ref v) = self;
70//! let mut nodes = Vec::with_capacity(v.len());
71//! for &(s,t) in v {
72//! nodes.push(s); nodes.push(t);
73//! }
74//! nodes.sort();
75//! nodes.dedup();
76//! nodes.into()
77//! }
78//!
79//! fn edges(&'a self) -> dot::Edges<'a,Ed> {
80//! let &Edges(ref edges) = self;
81//! (&edges[..]).into()
82//! }
83//!
84//! fn source(&self, e: &Ed) -> Nd { let &(s,_) = e; s }
85//!
86//! fn target(&self, e: &Ed) -> Nd { let &(_,t) = e; t }
87//! }
88//!
89//! # pub fn main() { render_to(&mut Vec::new()) }
90//! ```
91//!
92//! ```no_run
93//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
94//! pub fn main() {
95//! use std::fs::File;
96//! let mut f = File::create("example1.dot").unwrap();
97//! render_to(&mut f)
98//! }
99//! ```
100//!
101//! Output from first example (in `example1.dot`):
102//!
103//! ```dot
104//! digraph example1 {
105//! N0[label="N0"];
106//! N1[label="N1"];
107//! N2[label="N2"];
108//! N3[label="N3"];
109//! N4[label="N4"];
110//! N0 -> N1[label=""];
111//! N0 -> N2[label=""];
112//! N1 -> N3[label=""];
113//! N2 -> N3[label=""];
114//! N3 -> N4[label=""];
115//! N4 -> N4[label=""];
116//! }
117//! ```
118//!
119//! The second example illustrates using `node_label` and `edge_label` to
120//! add labels to the nodes and edges in the rendered graph. The graph
121//! here carries both `nodes` (the label text to use for rendering a
122//! particular node), and `edges` (again a list of `(source,target)`
123//! indices).
124//!
125//! This example also illustrates how to use a type (in this case the edge
126//! type) that shares substructure with the graph: the edge type here is a
127//! direct reference to the `(source,target)` pair stored in the graph's
128//! internal vector (rather than passing around a copy of the pair
129//! itself). Note that this implies that `fn edges(&'a self)` must
130//! construct a fresh `Vec<&'a (usize,usize)>` from the `Vec<(usize,usize)>`
131//! edges stored in `self`.
132//!
133//! Since both the set of nodes and the set of edges are always
134//! constructed from scratch via iterators, we use the `collect()` method
135//! from the `Iterator` trait to collect the nodes and edges into freshly
136//! constructed growable `Vec` values (rather than using `Cow` as in the
137//! first example above).
138//!
139//! The output from this example renders four nodes that make up the
140//! Hasse-diagram for the subsets of the set `{x, y}`. Each edge is
141//! labeled with the ⊆ character (specified using the HTML character
142//! entity `&sube`).
143//!
144//! ```rust
145//! #![feature(rustc_private)]
146//!
147//! use std::io::Write;
148//! use graphviz as dot;
149//!
150//! type Nd = usize;
151//! type Ed<'a> = &'a (usize, usize);
152//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
153//!
154//! pub fn render_to<W: Write>(output: &mut W) {
155//! let nodes = vec!["{x,y}","{x}","{y}","{}"];
156//! let edges = vec![(0,1), (0,2), (1,3), (2,3)];
157//! let graph = Graph { nodes: nodes, edges: edges };
158//!
159//! dot::render(&graph, output).unwrap()
160//! }
161//!
162//! impl<'a> dot::Labeller<'a> for Graph {
163//! type Node = Nd;
164//! type Edge = Ed<'a>;
165//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example2").unwrap() }
166//! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> {
167//! dot::Id::new(format!("N{}", n)).unwrap()
168//! }
169//! fn node_label<'b>(&'b self, n: &Nd) -> dot::LabelText<'b> {
170//! dot::LabelText::LabelStr(self.nodes[*n].into())
171//! }
172//! fn edge_label<'b>(&'b self, _: &Ed) -> dot::LabelText<'b> {
173//! dot::LabelText::LabelStr("⊆".into())
174//! }
175//! }
176//!
177//! impl<'a> dot::GraphWalk<'a> for Graph {
178//! type Node = Nd;
179//! type Edge = Ed<'a>;
180//! fn nodes(&self) -> dot::Nodes<'a,Nd> { (0..self.nodes.len()).collect() }
181//! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { self.edges.iter().collect() }
182//! fn source(&self, e: &Ed) -> Nd { let & &(s,_) = e; s }
183//! fn target(&self, e: &Ed) -> Nd { let & &(_,t) = e; t }
184//! }
185//!
186//! # pub fn main() { render_to(&mut Vec::new()) }
187//! ```
188//!
189//! ```no_run
190//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
191//! pub fn main() {
192//! use std::fs::File;
193//! let mut f = File::create("example2.dot").unwrap();
194//! render_to(&mut f)
195//! }
196//! ```
197//!
198//! The third example is similar to the second, except now each node and
199//! edge now carries a reference to the string label for each node as well
200//! as that node's index. (This is another illustration of how to share
201//! structure with the graph itself, and why one might want to do so.)
202//!
203//! The output from this example is the same as the second example: the
204//! Hasse-diagram for the subsets of the set `{x, y}`.
205//!
206//! ```rust
207//! #![feature(rustc_private)]
208//!
209//! use std::io::Write;
210//! use graphviz as dot;
211//!
212//! type Nd<'a> = (usize, &'a str);
213//! type Ed<'a> = (Nd<'a>, Nd<'a>);
214//! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> }
215//!
216//! pub fn render_to<W: Write>(output: &mut W) {
217//! let nodes = vec!["{x,y}","{x}","{y}","{}"];
218//! let edges = vec![(0,1), (0,2), (1,3), (2,3)];
219//! let graph = Graph { nodes: nodes, edges: edges };
220//!
221//! dot::render(&graph, output).unwrap()
222//! }
223//!
224//! impl<'a> dot::Labeller<'a> for Graph {
225//! type Node = Nd<'a>;
226//! type Edge = Ed<'a>;
227//! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example3").unwrap() }
228//! fn node_id(&'a self, n: &Nd<'a>) -> dot::Id<'a> {
229//! dot::Id::new(format!("N{}", n.0)).unwrap()
230//! }
231//! fn node_label<'b>(&'b self, n: &Nd<'b>) -> dot::LabelText<'b> {
232//! let &(i, _) = n;
233//! dot::LabelText::LabelStr(self.nodes[i].into())
234//! }
235//! fn edge_label<'b>(&'b self, _: &Ed<'b>) -> dot::LabelText<'b> {
236//! dot::LabelText::LabelStr("⊆".into())
237//! }
238//! }
239//!
240//! impl<'a> dot::GraphWalk<'a> for Graph {
241//! type Node = Nd<'a>;
242//! type Edge = Ed<'a>;
243//! fn nodes(&'a self) -> dot::Nodes<'a,Nd<'a>> {
244//! self.nodes.iter().map(|s| &s[..]).enumerate().collect()
245//! }
246//! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> {
247//! self.edges.iter()
248//! .map(|&(i,j)|((i, &self.nodes[i][..]),
249//! (j, &self.nodes[j][..])))
250//! .collect()
251//! }
252//! fn source(&self, e: &Ed<'a>) -> Nd<'a> { let &(s,_) = e; s }
253//! fn target(&self, e: &Ed<'a>) -> Nd<'a> { let &(_,t) = e; t }
254//! }
255//!
256//! # pub fn main() { render_to(&mut Vec::new()) }
257//! ```
258//!
259//! ```no_run
260//! # pub fn render_to<W:std::io::Write>(output: &mut W) { unimplemented!() }
261//! pub fn main() {
262//! use std::fs::File;
263//! let mut f = File::create("example3.dot").unwrap();
264//! render_to(&mut f)
265//! }
266//! ```
267//!
268//! # References
269//!
270//! * [Graphviz](http://www.graphviz.org/)
271//!
272//! * [DOT language](http://www.graphviz.org/doc/info/lang.html)
273
274#![doc(html_root_url = "https://doc.rust-lang.org/nightly/",
275 test(attr(allow(unused_variables), deny(warnings))))]
276
277#![feature(rustc_private, nll)]
278
279use LabelText::*;
280
281use std::borrow::Cow;
282use std::io::prelude::*;
283use std::io;
284
285/// The text for a graphviz label on a node or edge.
286pub enum LabelText<'a> {
287 /// This kind of label preserves the text directly as is.
288 ///
289 /// Occurrences of backslashes (`\`) are escaped, and thus appear
290 /// as backslashes in the rendered label.
291 LabelStr(Cow<'a, str>),
292
293 /// This kind of label uses the graphviz label escString type:
294 /// <http://www.graphviz.org/content/attrs#kescString>
295 ///
296 /// Occurrences of backslashes (`\`) are not escaped; instead they
297 /// are interpreted as initiating an escString escape sequence.
298 ///
299 /// Escape sequences of particular interest: in addition to `\n`
300 /// to break a line (centering the line preceding the `\n`), there
301 /// are also the escape sequences `\l` which left-justifies the
302 /// preceding line and `\r` which right-justifies it.
303 EscStr(Cow<'a, str>),
304
305 /// This uses a graphviz [HTML string label][html]. The string is
306 /// printed exactly as given, but between `<` and `>`. **No
307 /// escaping is performed.**
308 ///
309 /// [html]: http://www.graphviz.org/content/node-shapes#html
310 HtmlStr(Cow<'a, str>),
311}
312
313/// The style for a node or edge.
314/// See <http://www.graphviz.org/doc/info/attrs.html#k:style> for descriptions.
315/// Note that some of these are not valid for edges.
316#[derive(Copy, Clone, PartialEq, Eq, Debug)]
317pub enum Style {
318 None,
319 Solid,
320 Dashed,
321 Dotted,
322 Bold,
323 Rounded,
324 Diagonals,
325 Filled,
326 Striped,
327 Wedged,
328}
329
330impl Style {
331 pub fn as_slice(self) -> &'static str {
332 match self {
333 Style::None => "",
334 Style::Solid => "solid",
335 Style::Dashed => "dashed",
336 Style::Dotted => "dotted",
337 Style::Bold => "bold",
338 Style::Rounded => "rounded",
339 Style::Diagonals => "diagonals",
340 Style::Filled => "filled",
341 Style::Striped => "striped",
342 Style::Wedged => "wedged",
343 }
344 }
345}
346
347// There is a tension in the design of the labelling API.
348//
349// For example, I considered making a `Labeller<T>` trait that
350// provides labels for `T`, and then making the graph type `G`
351// implement `Labeller<Node>` and `Labeller<Edge>`. However, this is
352// not possible without functional dependencies. (One could work
353// around that, but I did not explore that avenue heavily.)
354//
355// Another approach that I actually used for a while was to make a
356// `Label<Context>` trait that is implemented by the client-specific
357// Node and Edge types (as well as an implementation on Graph itself
358// for the overall name for the graph). The main disadvantage of this
359// second approach (compared to having the `G` type parameter
360// implement a Labelling service) that I have encountered is that it
361// makes it impossible to use types outside of the current crate
362// directly as Nodes/Edges; you need to wrap them in newtype'd
363// structs. See e.g., the `No` and `Ed` structs in the examples. (In
364// practice clients using a graph in some other crate would need to
365// provide some sort of adapter shim over the graph anyway to
366// interface with this library).
367//
368// Another approach would be to make a single `Labeller<N,E>` trait
369// that provides three methods (graph_label, node_label, edge_label),
370// and then make `G` implement `Labeller<N,E>`. At first this did not
371// appeal to me, since I had thought I would need separate methods on
372// each data variant for dot-internal identifiers versus user-visible
373// labels. However, the identifier/label distinction only arises for
374// nodes; graphs themselves only have identifiers, and edges only have
375// labels.
376//
377// So in the end I decided to use the third approach described above.
378
379/// `Id` is a Graphviz `ID`.
380pub struct Id<'a> {
381 name: Cow<'a, str>,
382}
383
384impl<'a> Id<'a> {
385 /// Creates an `Id` named `name`.
386 ///
387 /// The caller must ensure that the input conforms to an
388 /// identifier format: it must be a non-empty string made up of
389 /// alphanumeric or underscore characters, not beginning with a
390 /// digit (i.e., the regular expression `[a-zA-Z_][a-zA-Z_0-9]*`).
391 ///
392 /// (Note: this format is a strict subset of the `ID` format
393 /// defined by the DOT language. This function may change in the
394 /// future to accept a broader subset, or the entirety, of DOT's
395 /// `ID` format.)
396 ///
397 /// Passing an invalid string (containing spaces, brackets,
398 /// quotes, ...) will return an empty `Err` value.
399 pub fn new<Name: Into<Cow<'a, str>>>(name: Name) -> Result<Id<'a>, ()> {
400 let name = name.into();
401 match name.chars().next() {
402 Some(c) if c.is_ascii_alphabetic() || c == '_' => {}
403 _ => return Err(()),
404 }
405 if !name.chars().all(|c| c.is_ascii_alphanumeric() || c == '_' ) {
406 return Err(());
407 }
408
409 Ok(Id { name })
410 }
411
412 pub fn as_slice(&'a self) -> &'a str {
413 &*self.name
414 }
415
416 pub fn name(self) -> Cow<'a, str> {
417 self.name
418 }
419}
420
421/// Each instance of a type that implements `Label<C>` maps to a
422/// unique identifier with respect to `C`, which is used to identify
423/// it in the generated .dot file. They can also provide more
424/// elaborate (and non-unique) label text that is used in the graphviz
425/// rendered output.
426
427/// The graph instance is responsible for providing the DOT compatible
428/// identifiers for the nodes and (optionally) rendered labels for the nodes and
429/// edges, as well as an identifier for the graph itself.
430pub trait Labeller<'a> {
431 type Node;
432 type Edge;
433
434 /// Must return a DOT compatible identifier naming the graph.
435 fn graph_id(&'a self) -> Id<'a>;
436
437 /// Maps `n` to a unique identifier with respect to `self`. The
438 /// implementor is responsible for ensuring that the returned name
439 /// is a valid DOT identifier.
440 fn node_id(&'a self, n: &Self::Node) -> Id<'a>;
441
442 /// Maps `n` to one of the [graphviz `shape` names][1]. If `None`
443 /// is returned, no `shape` attribute is specified.
444 ///
445 /// [1]: http://www.graphviz.org/content/node-shapes
446 fn node_shape(&'a self, _node: &Self::Node) -> Option<LabelText<'a>> {
447 None
448 }
449
450 /// Maps `n` to a label that will be used in the rendered output.
451 /// The label need not be unique, and may be the empty string; the
452 /// default is just the output from `node_id`.
453 fn node_label(&'a self, n: &Self::Node) -> LabelText<'a> {
454 LabelStr(self.node_id(n).name)
455 }
456
457 /// Maps `e` to a label that will be used in the rendered output.
458 /// The label need not be unique, and may be the empty string; the
459 /// default is in fact the empty string.
460 fn edge_label(&'a self, _e: &Self::Edge) -> LabelText<'a> {
461 LabelStr("".into())
462 }
463
464 /// Maps `n` to a style that will be used in the rendered output.
465 fn node_style(&'a self, _n: &Self::Node) -> Style {
466 Style::None
467 }
468
469 /// Maps `e` to a style that will be used in the rendered output.
470 fn edge_style(&'a self, _e: &Self::Edge) -> Style {
471 Style::None
472 }
473}
474
475/// Escape tags in such a way that it is suitable for inclusion in a
476/// Graphviz HTML label.
477pub fn escape_html(s: &str) -> String {
478 s.replace("&", "&")
479 .replace("\"", """)
480 .replace("<", "<")
481 .replace(">", ">")
482}
483
484impl<'a> LabelText<'a> {
485 pub fn label<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
486 LabelStr(s.into())
487 }
488
489 pub fn escaped<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
490 EscStr(s.into())
491 }
492
493 pub fn html<S: Into<Cow<'a, str>>>(s: S) -> LabelText<'a> {
494 HtmlStr(s.into())
495 }
496
497 fn escape_char<F>(c: char, mut f: F)
498 where F: FnMut(char)
499 {
500 match c {
501 // not escaping \\, since Graphviz escString needs to
502 // interpret backslashes; see EscStr above.
503 '\\' => f(c),
504 _ => {
505 for c in c.escape_default() {
506 f(c)
507 }
508 }
509 }
510 }
511 fn escape_str(s: &str) -> String {
512 let mut out = String::with_capacity(s.len());
513 for c in s.chars() {
514 LabelText::escape_char(c, |c| out.push(c));
515 }
516 out
517 }
518
519 /// Renders text as string suitable for a label in a .dot file.
520 /// This includes quotes or suitable delimiters.
521 pub fn to_dot_string(&self) -> String {
522 match *self {
523 LabelStr(ref s) => format!("\"{}\"", s.escape_default()),
524 EscStr(ref s) => format!("\"{}\"", LabelText::escape_str(&s)),
525 HtmlStr(ref s) => format!("<{}>", s),
526 }
527 }
528
529 /// Decomposes content into string suitable for making EscStr that
530 /// yields same content as self. The result obeys the law
531 /// render(`lt`) == render(`EscStr(lt.pre_escaped_content())`) for
532 /// all `lt: LabelText`.
533 fn pre_escaped_content(self) -> Cow<'a, str> {
534 match self {
535 EscStr(s) => s,
536 LabelStr(s) => {
537 if s.contains('\\') {
538 (&*s).escape_default().to_string().into()
539 } else {
540 s
541 }
542 }
543 HtmlStr(s) => s,
544 }
545 }
546
547 /// Puts `prefix` on a line above this label, with a blank line separator.
548 pub fn prefix_line(self, prefix: LabelText<'_>) -> LabelText<'static> {
549 prefix.suffix_line(self)
550 }
551
552 /// Puts `suffix` on a line below this label, with a blank line separator.
553 pub fn suffix_line(self, suffix: LabelText<'_>) -> LabelText<'static> {
554 let mut prefix = self.pre_escaped_content().into_owned();
555 let suffix = suffix.pre_escaped_content();
556 prefix.push_str(r"\n\n");
557 prefix.push_str(&suffix);
558 EscStr(prefix.into())
559 }
560}
561
562pub type Nodes<'a,N> = Cow<'a,[N]>;
563pub type Edges<'a,E> = Cow<'a,[E]>;
564
565// (The type parameters in GraphWalk should be associated items,
566// when/if Rust supports such.)
567
568/// GraphWalk is an abstraction over a directed graph = (nodes,edges)
569/// made up of node handles `N` and edge handles `E`, where each `E`
570/// can be mapped to its source and target nodes.
571///
572/// The lifetime parameter `'a` is exposed in this trait (rather than
573/// introduced as a generic parameter on each method declaration) so
574/// that a client impl can choose `N` and `E` that have substructure
575/// that is bound by the self lifetime `'a`.
576///
577/// The `nodes` and `edges` method each return instantiations of
578/// `Cow<[T]>` to leave implementors the freedom to create
579/// entirely new vectors or to pass back slices into internally owned
580/// vectors.
581pub trait GraphWalk<'a> {
582 type Node: Clone;
583 type Edge: Clone;
584
585 /// Returns all the nodes in this graph.
586 fn nodes(&'a self) -> Nodes<'a, Self::Node>;
587 /// Returns all of the edges in this graph.
588 fn edges(&'a self) -> Edges<'a, Self::Edge>;
589 /// The source node for `edge`.
590 fn source(&'a self, edge: &Self::Edge) -> Self::Node;
591 /// The target node for `edge`.
592 fn target(&'a self, edge: &Self::Edge) -> Self::Node;
593}
594
595#[derive(Copy, Clone, PartialEq, Eq, Debug)]
596pub enum RenderOption {
597 NoEdgeLabels,
598 NoNodeLabels,
599 NoEdgeStyles,
600 NoNodeStyles,
601}
602
603/// Returns vec holding all the default render options.
604pub fn default_options() -> Vec<RenderOption> {
605 vec![]
606}
607
608/// Renders directed graph `g` into the writer `w` in DOT syntax.
609/// (Simple wrapper around `render_opts` that passes a default set of options.)
610pub fn render<'a,N,E,G,W>(g: &'a G, w: &mut W) -> io::Result<()>
611 where N: Clone + 'a,
612 E: Clone + 'a,
613 G: Labeller<'a, Node=N, Edge=E> + GraphWalk<'a, Node=N, Edge=E>,
614 W: Write
615{
616 render_opts(g, w, &[])
617}
618
619/// Renders directed graph `g` into the writer `w` in DOT syntax.
620/// (Main entry point for the library.)
621pub fn render_opts<'a, N, E, G, W>(g: &'a G,
622 w: &mut W,
623 options: &[RenderOption])
624 -> io::Result<()>
625 where N: Clone + 'a,
626 E: Clone + 'a,
627 G: Labeller<'a, Node=N, Edge=E> + GraphWalk<'a, Node=N, Edge=E>,
628 W: Write
629{
630 writeln!(w, "digraph {} {{", g.graph_id().as_slice())?;
631 for n in g.nodes().iter() {
632 write!(w, " ")?;
633 let id = g.node_id(n);
634
635 let escaped = &g.node_label(n).to_dot_string();
636
637 let mut text = Vec::new();
638 write!(text, "{}", id.as_slice()).unwrap();
639
640 if !options.contains(&RenderOption::NoNodeLabels) {
641 write!(text, "[label={}]", escaped).unwrap();
642 }
643
644 let style = g.node_style(n);
645 if !options.contains(&RenderOption::NoNodeStyles) && style != Style::None {
646 write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
647 }
648
649 if let Some(s) = g.node_shape(n) {
650 write!(text, "[shape={}]", &s.to_dot_string()).unwrap();
651 }
652
653 writeln!(text, ";").unwrap();
654 w.write_all(&text[..])?;
655 }
656
657 for e in g.edges().iter() {
658 let escaped_label = &g.edge_label(e).to_dot_string();
659 write!(w, " ")?;
660 let source = g.source(e);
661 let target = g.target(e);
662 let source_id = g.node_id(&source);
663 let target_id = g.node_id(&target);
664
665 let mut text = Vec::new();
666 write!(text, "{} -> {}", source_id.as_slice(), target_id.as_slice()).unwrap();
667
668 if !options.contains(&RenderOption::NoEdgeLabels) {
669 write!(text, "[label={}]", escaped_label).unwrap();
670 }
671
672 let style = g.edge_style(e);
673 if !options.contains(&RenderOption::NoEdgeStyles) && style != Style::None {
674 write!(text, "[style=\"{}\"]", style.as_slice()).unwrap();
675 }
676
677 writeln!(text, ";").unwrap();
678 w.write_all(&text[..])?;
679 }
680
681 writeln!(w, "}}")
682}
683
684#[cfg(test)]
685mod tests;