1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
use crate::{
    abi::{TypeAbi, TypeName},
    types::heap::BoxedBytes,
};
use alloc::{boxed::Box, vec::Vec};
use core::fmt::Debug;

const ERR_BAD_H256_LENGTH: &str = "bad H256 length";
const ZERO_32: &[u8] = &[0u8; 32];

/// Type that holds 32 bytes of data.
/// Data is kept on the heap to keep wasm size low and avoid copies.
#[derive(Hash, PartialEq, Eq, Clone, Debug)]
pub struct H256(Box<[u8; 32]>);

impl From<[u8; 32]> for H256 {
    /// Constructs a hash type from the given bytes array of fixed length.
    ///
    /// # Note
    ///
    /// The given bytes are interpreted in big endian order.
    #[inline]
    fn from(arr: [u8; 32]) -> Self {
        H256(Box::new(arr))
    }
}

impl<'a> From<&'a [u8; 32]> for H256 {
    /// Constructs a hash type from the given reference
    /// to the bytes array of fixed length.
    ///
    /// # Note
    ///
    /// The given bytes are interpreted in big endian order.
    #[inline]
    fn from(bytes: &'a [u8; 32]) -> Self {
        H256(Box::new(*bytes))
    }
}

impl<'a> From<&'a mut [u8; 32]> for H256 {
    /// Constructs a hash type from the given reference
    /// to the mutable bytes array of fixed length.
    ///
    /// # Note
    ///
    /// The given bytes are interpreted in big endian order.
    #[inline]
    fn from(bytes: &'a mut [u8; 32]) -> Self {
        H256(Box::new(*bytes))
    }
}

impl From<Box<[u8; 32]>> for H256 {
    #[inline]
    fn from(bytes: Box<[u8; 32]>) -> Self {
        H256(bytes)
    }
}

impl H256 {
    pub fn from_slice(slice: &[u8]) -> Self {
        let mut arr = [0u8; 32];
        let len = core::cmp::min(slice.len(), 32);
        arr[..len].copy_from_slice(&slice[..len]);
        H256(Box::new(arr))
    }
}

impl From<H256> for [u8; 32] {
    #[inline]
    fn from(s: H256) -> Self {
        *(s.0)
    }
}

impl AsRef<[u8]> for H256 {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        self.as_bytes()
    }
}

impl AsMut<[u8]> for H256 {
    #[inline]
    fn as_mut(&mut self) -> &mut [u8] {
        self.0.as_mut()
    }
}

impl H256 {
    /// Returns a new zero-initialized fixed hash.
    /// Allocates directly in heap.
    /// Minimal resulting wasm code (14 bytes if not inlined).
    pub fn zero() -> Self {
        use alloc::alloc::{alloc_zeroed, Layout};
        unsafe {
            let ptr = alloc_zeroed(Layout::new::<[u8; 32]>()) as *mut [u8; 32];
            H256(Box::from_raw(ptr))
        }
    }

    /// Returns the size of this hash in bytes.
    #[inline]
    pub fn len_bytes() -> usize {
        32
    }

    /// Extracts a byte slice containing the entire fixed hash.
    #[inline]
    pub fn as_bytes(&self) -> &[u8] {
        self.0.as_ref()
    }

    #[inline]
    pub fn as_array(&self) -> &[u8; 32] {
        self.0.as_ref()
    }

    #[inline]
    pub fn copy_to_array(&self, target: &mut [u8; 32]) {
        target.copy_from_slice(&self.0[..]);
    }

    #[inline]
    pub fn to_vec(&self) -> Vec<u8> {
        self.0[..].to_vec()
    }

    /// Pointer to the data on the heap.
    #[inline]
    pub fn as_ptr(&self) -> *const u8 {
        self.0.as_ptr()
    }

    /// Returns an unsafe mutable pointer to the data on the heap.
    /// Used by the API to populate data.
    #[inline]
    pub fn as_mut_ptr(&mut self) -> *mut u8 {
        self.0.as_mut_ptr()
    }

    /// True if all 32 bytes of the hash are zero.
    pub fn is_zero(&self) -> bool {
        self.as_bytes() == ZERO_32
    }

    /// Transmutes self to an (in principle) variable length boxed bytes object.
    /// Both BoxedBytes and H256 keep the data on the heap, so only the pointer to that data needs to be transmuted.
    /// Does not reallocate or copy data, the data on the heap remains untouched.
    pub fn into_boxed_bytes(self) -> BoxedBytes {
        let raw = Box::into_raw(self.0) as *mut u8;
        unsafe {
            let bytes_box = Box::<[u8]>::from_raw(core::slice::from_raw_parts_mut(raw, 32));
            bytes_box.into()
        }
    }
}

use crate::codec::*;

impl NestedEncode for H256 {
    fn dep_encode_or_handle_err<O, H>(&self, dest: &mut O, _h: H) -> Result<(), H::HandledErr>
    where
        O: NestedEncodeOutput,
        H: EncodeErrorHandler,
    {
        dest.write(&self.0[..]);
        Ok(())
    }
}

impl TopEncode for H256 {
    fn top_encode_or_handle_err<O, H>(&self, output: O, _h: H) -> Result<(), H::HandledErr>
    where
        O: TopEncodeOutput,
        H: EncodeErrorHandler,
    {
        output.set_slice_u8(&self.0[..]);
        Ok(())
    }
}

impl NestedDecode for H256 {
    fn dep_decode_or_handle_err<I, H>(input: &mut I, h: H) -> Result<Self, H::HandledErr>
    where
        I: NestedDecodeInput,
        H: DecodeErrorHandler,
    {
        let mut res = H256::zero();
        input.read_into(res.as_mut(), h)?;
        Ok(res)
    }
}

impl H256 {
    // Transmutes directly from a (variable-sized) boxed byte slice.
    // Will exit early if the input length is not 32.
    // Designed to be used especially in deserializer implementations.
    fn decode_from_boxed_bytes_or_handle_err<H>(
        input: Box<[u8]>,
        h: H,
    ) -> Result<Self, H::HandledErr>
    where
        H: DecodeErrorHandler,
    {
        if input.len() == 32 {
            let raw = Box::into_raw(input);
            let array_box = unsafe { Box::<[u8; 32]>::from_raw(raw as *mut [u8; 32]) };
            Ok(H256(array_box))
        } else {
            Err(h.handle_error(DecodeError::from(ERR_BAD_H256_LENGTH)))
        }
    }
}

impl TopDecode for H256 {
    fn top_decode_or_handle_err<I, H>(input: I, h: H) -> Result<Self, H::HandledErr>
    where
        I: TopDecodeInput,
        H: DecodeErrorHandler,
    {
        Self::decode_from_boxed_bytes_or_handle_err(input.into_boxed_slice_u8(), h)
    }
}

impl TypeAbi for H256 {
    fn type_name() -> TypeName {
        "H256".into()
    }
}

#[cfg(test)]
mod h256_tests {
    use super::*;
    use crate::codec::test_util::{check_top_encode, check_top_encode_decode};
    use alloc::vec::Vec;

    #[test]
    fn test_h256_from_array() {
        let addr = H256::from([4u8; 32]);
        check_top_encode_decode(addr, &[4u8; 32]);
    }

    #[test]
    fn test_opt_h256() {
        let addr = H256::from([4u8; 32]);
        let mut expected: Vec<u8> = Vec::new();
        expected.push(1u8);
        expected.extend_from_slice(&[4u8; 32]);
        check_top_encode_decode(Some(addr), expected.as_slice());
    }

    #[test]
    fn test_ser_h256_ref() {
        let addr = H256::from([4u8; 32]);
        let expected_bytes: &[u8] = &[4u8; 32 * 3];

        let tuple = (&addr, &&&addr, addr.clone());
        let serialized_bytes = check_top_encode(&tuple);
        assert_eq!(serialized_bytes.as_slice(), expected_bytes);
    }

    #[test]
    fn test_is_zero() {
        assert!(H256::zero().is_zero());
    }

    #[test]
    fn test_size_of() {
        use core::mem::size_of;
        assert_eq!(size_of::<H256>(), size_of::<usize>());
        assert_eq!(size_of::<Option<H256>>(), size_of::<usize>());
    }

    #[test]
    fn test_into_boxed_bytes() {
        let array = b"32_bytes________________________";
        let h256 = H256::from(array);
        let bb = h256.into_boxed_bytes();
        assert_eq!(bb.as_slice(), &array[..]);
    }
}