multiversx_sc/hex_call_data/
cd_de.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
use super::SEPARATOR;
use crate::{
    codec::{DecodeError, DecodeErrorHandler, TopDecodeMultiInput},
    err_msg,
    formatter::hex_util::hex_digits_to_byte,
};
use alloc::{boxed::Box, vec::Vec};

/// Deserializes from the MultiversX smart contract call format.
///
/// This format consists of the function name, followed by '@', follwed by hex-encoded argument bytes separated by '@' characters.
/// Example: "funcName@00000@aaaa@1234@@".
/// Arguments can be empty.
/// Argument hex encodings must always have an even number of digits.
///
/// HexCallDataDeserializer borrows its input and will allocate new Vecs for each output.
///
/// Converting from bytes to specific argument types is not in scope. The `TopDecodeMulti` trait deals with that.
///
/// Currently not used anywhere in the framework, but the functionality is available for anyone who needs it.
///
pub struct HexCallDataDeserializer<'a> {
    source: &'a [u8],
    index: usize,
    func_name_output: &'a [u8],
}

impl<'a> HexCallDataDeserializer<'a> {
    pub fn new(source: &'a [u8]) -> Self {
        let mut de = HexCallDataDeserializer {
            source,
            index: 0,
            func_name_output: &[],
        };

        // extract func name and advance index, before any argument can be retrieved
        if let Some(func_name) = de.next_argument_hex() {
            de.func_name_output = func_name
        }

        de
    }

    /// Gets the first component of the call data, which is the function name.
    /// Unlike the arguments, this can be called at any time.
    #[inline]
    pub fn get_func_name(&self) -> &'a [u8] {
        self.func_name_output
    }

    fn next_argument_hex(&mut self) -> Option<&'a [u8]> {
        let initial_index = self.index;
        loop {
            if !self.has_next() {
                return None;
            }

            if self.index == self.source.len() {
                let slice = &self.source[initial_index..self.index];
                self.index += 1; // make index = len + 1 to signal that we are done, and return None from the next call on
                return Some(slice);
            }

            let c = self.source[self.index];
            if c == SEPARATOR {
                let slice = &self.source[initial_index..self.index];
                self.index += 1;
                return Some(slice);
            }

            self.index += 1;
        }
    }

    #[inline]
    pub fn has_next(&self) -> bool {
        self.index <= self.source.len()
    }

    /// Gets the next argument, deserializes from hex and returns the resulting bytes.
    pub fn next_argument(&mut self) -> Result<Option<Vec<u8>>, &'static str> {
        match self.next_argument_hex() {
            None => Ok(None),
            Some(arg_hex) => {
                if arg_hex.len() % 2 != 0 {
                    return Err(err_msg::DESERIALIZATION_ODD_DIGITS);
                }
                let res_len = arg_hex.len() / 2;
                let mut res_vec = Vec::with_capacity(res_len);
                for i in 0..res_len {
                    match hex_digits_to_byte(arg_hex[2 * i], arg_hex[2 * i + 1]) {
                        None => {
                            return Err(err_msg::DESERIALIZATION_INVALID_BYTE);
                        },
                        Some(byte) => {
                            res_vec.push(byte);
                        },
                    }
                }
                Ok(Some(res_vec))
            },
        }
    }
}

impl TopDecodeMultiInput for HexCallDataDeserializer<'_> {
    type ValueInput = Box<[u8]>;

    fn has_next(&self) -> bool {
        self.has_next()
    }

    fn next_value_input<H>(&mut self, h: H) -> Result<Self::ValueInput, H::HandledErr>
    where
        H: DecodeErrorHandler,
    {
        match self.next_argument() {
            Ok(Some(arg_bytes)) => Ok(arg_bytes.into_boxed_slice()),
            Ok(None) => Err(h.handle_error(DecodeError::MULTI_TOO_FEW_ARGS)),
            Err(sc_err) => Err(h.handle_error(DecodeError::from(sc_err))),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_next_raw_bytes_1() {
        let input: &[u8] = b"func@1111@2222";
        let mut de = HexCallDataDeserializer::new(input);
        assert_eq!(de.get_func_name(), &b"func"[..]);
        assert_eq!(de.next_argument_hex(), Some(&b"1111"[..]));
        assert_eq!(de.next_argument(), Ok(Some([0x22, 0x22].to_vec())));
        assert_eq!(de.next_argument(), Ok(None));
        assert_eq!(de.next_argument(), Ok(None));
    }

    #[test]
    fn test_next_raw_bytes_empty() {
        let mut de = HexCallDataDeserializer::new(&[]);
        assert_eq!(de.get_func_name(), &[][..]);
        assert_eq!(de.next_argument(), Ok(None));
    }

    #[test]
    fn test_next_raw_bytes_only_func() {
        let input: &[u8] = b"func";
        let mut de = HexCallDataDeserializer::new(input);

        assert_eq!(de.get_func_name(), &b"func"[..]);
        assert_eq!(de.next_argument(), Ok(None));
        assert_eq!(de.next_argument(), Ok(None));
    }

    #[test]
    fn test_next_raw_bytes_some_empty() {
        let input: &[u8] = b"func@@2222";
        let mut de = HexCallDataDeserializer::new(input);
        assert_eq!(de.next_argument(), Ok(Some(Vec::new())));
        assert_eq!(de.next_argument(), Ok(Some([0x22, 0x22].to_vec())));
        assert_eq!(de.next_argument(), Ok(None));
        assert_eq!(de.next_argument(), Ok(None));

        assert_eq!(de.get_func_name(), &b"func"[..]);
    }

    #[test]
    fn test_next_raw_bytes_ends_empty() {
        let input: &[u8] = b"func@";
        let mut de = HexCallDataDeserializer::new(input);
        assert_eq!(de.get_func_name(), &b"func"[..]);
        assert_eq!(de.next_argument(), Ok(Some(Vec::new())));
        assert_eq!(de.next_argument(), Ok(None));
        assert_eq!(de.next_argument(), Ok(None));
    }

    #[test]
    fn test_next_raw_bytes_many_empty() {
        let input: &[u8] = b"func@@2222@@";
        let mut de = HexCallDataDeserializer::new(input);
        assert_eq!(de.get_func_name(), &b"func"[..]);
        assert_eq!(de.next_argument(), Ok(Some(Vec::new())));
        assert_eq!(de.next_argument(), Ok(Some([0x22, 0x22].to_vec())));
        assert_eq!(de.next_argument(), Ok(Some(Vec::new())));
        assert_eq!(de.next_argument(), Ok(Some(Vec::new())));
        assert_eq!(de.next_argument(), Ok(None));
        assert_eq!(de.next_argument(), Ok(None));
    }

    #[test]
    fn test_next_raw_bytes_all_empty() {
        let input: &[u8] = b"@@@";
        let mut de = HexCallDataDeserializer::new(input);
        assert_eq!(de.get_func_name(), &[][..]);
        assert_eq!(de.next_argument(), Ok(Some(Vec::new())));
        assert_eq!(de.next_argument(), Ok(Some(Vec::new())));
        assert_eq!(de.next_argument(), Ok(Some(Vec::new())));
        assert_eq!(de.next_argument(), Ok(None));
        assert_eq!(de.next_argument(), Ok(None));
    }

    #[test]
    fn test_next_raw_bytes_all_empty_but_last() {
        let input: &[u8] = b"@@@1234";
        let mut de = HexCallDataDeserializer::new(input);
        assert_eq!(de.get_func_name(), &[][..]);
        assert_eq!(de.next_argument(), Ok(Some(Vec::new())));
        assert_eq!(de.next_argument(), Ok(Some(Vec::new())));
        assert_eq!(de.next_argument(), Ok(Some([0x12, 0x34].to_vec())));
        assert_eq!(de.next_argument(), Ok(None));
        assert_eq!(de.next_argument(), Ok(None));
    }

    #[test]
    fn test_next_argument_large() {
        let input: &[u8] = b"func@0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef";
        let mut de = HexCallDataDeserializer::new(input);
        let expected: [u8; 32] = [
            0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01, 0x23, 0x45, 0x67, 0x89, 0xab,
            0xcd, 0xef, 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01, 0x23, 0x45, 0x67,
            0x89, 0xab, 0xcd, 0xef,
        ];
        assert_eq!(de.get_func_name(), &b"func"[..]);
        assert!(de.next_argument() == Ok(Some(expected.to_vec())));
        assert_eq!(de.next_argument(), Ok(None));
        assert_eq!(de.next_argument(), Ok(None));
    }

    #[test]
    fn test_next_vec_odd() {
        let input: &[u8] = b"func@123";
        let mut de = HexCallDataDeserializer::new(input);
        assert_eq!(de.get_func_name(), &b"func"[..]);
        assert_eq!(de.next_argument(), Err(err_msg::DESERIALIZATION_ODD_DIGITS));
        assert_eq!(de.next_argument(), Ok(None));
        assert_eq!(de.next_argument(), Ok(None));
    }
}