nabla_ml/
nab_array.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
use rand::Rng;
use rand_distr::StandardNormal;
use std::ops::{Add, Sub, Mul};

#[derive(Debug, Clone)]
pub struct NDArray {
    pub data: Vec<f64>,
    pub shape: Vec<usize>,
}

impl NDArray {
    pub fn new(data: Vec<f64>, shape: Vec<usize>) -> Self {
        let total_size: usize = shape.iter().product();
        assert_eq!(data.len(), total_size, "Data length must match shape dimensions");
        NDArray { data, shape }
    }

    pub fn from_vec(data: Vec<f64>) -> Self {
        let len = data.len();
        Self::new(data, vec![len])
    }

    #[allow(dead_code)]
    pub fn from_matrix(data: Vec<Vec<f64>>) -> Self {
        let rows = data.len();
        let cols = data.get(0).map_or(0, |row| row.len());
        let flat_data: Vec<f64> = data.into_iter().flatten().collect();
        Self::new(flat_data, vec![rows, cols])
    }

    pub fn shape(&self) -> &[usize] {
        &self.shape
    }

    pub fn ndim(&self) -> usize {
        self.shape.len()
    }

    /// Returns a reference to the data of the array
    pub fn data(&self) -> &[f64] {
        &self.data
    }

    /// Creates a 2D array (matrix) of random numbers between 0 and 1
    ///
    /// # Arguments
    ///
    /// * `rows` - The number of rows in the matrix.
    /// * `cols` - The number of columns in the matrix.
    ///
    /// # Returns
    ///
    /// A 2D NDArray filled with random numbers.
    #[allow(dead_code)]
    pub fn rand_2d(rows: usize, cols: usize) -> Self {
        let mut rng = rand::thread_rng();
        let data: Vec<f64> = (0..rows * cols).map(|_| rng.gen()).collect();
        Self::new(data, vec![rows, cols])
    }


    /// Creates a 1D array of random numbers following a normal distribution
    ///
    /// # Arguments
    ///
    /// * `size` - The number of elements in the array.
    ///
    /// # Returns
    ///
    /// A 1D NDArray filled with random numbers from a normal distribution.
    #[allow(dead_code)]
    pub fn randn(size: usize) -> Self {
        let mut rng = rand::thread_rng();
        let data: Vec<f64> = (0..size).map(|_| rng.sample(StandardNormal)).collect();
        Self::from_vec(data)
    }

    /// Creates a 2D array (matrix) of random numbers following a normal distribution
    ///
    /// # Arguments
    ///
    /// * `rows` - The number of rows in the matrix.
    /// * `cols` - The number of columns in the matrix.
    ///
    /// # Returns
    ///
    /// A 2D NDArray filled with random numbers from a normal distribution.
    #[allow(dead_code)]
    pub fn randn_2d(rows: usize, cols: usize) -> Self {
        let mut rng = rand::thread_rng();
        let data: Vec<f64> = (0..rows * cols).map(|_| rng.sample(StandardNormal)).collect();
        Self::new(data, vec![rows, cols])
    }

    /// Creates a 1D array of random integers between `low` and `high`
    ///
    /// # Arguments
    ///
    /// * `low` - The lower bound (inclusive).
    /// * `high` - The upper bound (exclusive).
    /// * `size` - The number of elements in the array.
    ///
    /// # Returns
    ///
    /// A 1D NDArray filled with random integers.
    #[allow(dead_code)]
    pub fn randint(low: i32, high: i32, size: usize) -> Self {
        let mut rng = rand::thread_rng();
        let data: Vec<f64> = (0..size).map(|_| rng.gen_range(low..high) as f64).collect();
        Self::from_vec(data)
    }

    /// Creates a 2D array (matrix) of random integers between `low` and `high`
    ///
    /// # Arguments
    ///
    /// * `low` - The lower bound (inclusive).
    /// * `high` - The upper bound (exclusive).
    /// * `rows` - The number of rows in the matrix.
    /// * `cols` - The number of columns in the matrix.
    ///
    /// # Returns
    ///
    /// A 2D NDArray filled with random integers.
    #[allow(dead_code)]
    pub fn randint_2d(low: i32, high: i32, rows: usize, cols: usize) -> Self {
        let mut rng = rand::thread_rng();
        let data: Vec<f64> = (0..rows * cols).map(|_| rng.gen_range(low..high) as f64).collect();
        Self::new(data, vec![rows, cols])
    }

    /// Reshapes the array to the specified shape, allowing one dimension to be inferred
    ///
    /// # Arguments
    ///
    /// * `new_shape` - A vector representing the new shape, with at most one dimension as `-1`.
    ///
    /// # Returns
    ///
    /// A new NDArray with the specified shape.
    pub fn reshape(&self, mut new_shape: Vec<isize>) -> Self {
        let total_elements = self.data.len();
        let mut inferred_index = None;
        let mut specified_size = 1;

        for (i, &dim) in new_shape.iter().enumerate() {
            if dim == -1 {
                if inferred_index.is_some() {
                    panic!("Only one dimension can be inferred");
                }
                inferred_index = Some(i);
            } else {
                specified_size *= dim as usize;
            }
        }

        if let Some(index) = inferred_index {
            new_shape[index] = (total_elements / specified_size) as isize;
        }

        let new_shape_usize: Vec<usize> = new_shape.iter().map(|&x| x as usize).collect();
        assert_eq!(total_elements, new_shape_usize.iter().product::<usize>(), "New shape must have the same number of elements as the original array");

        Self::new(self.data.clone(), new_shape_usize)
    }

     /// Returns the maximum value in the array
    ///
    /// # Returns
    ///
    /// The maximum value as an f64.
    #[allow(dead_code)]
    pub fn max(&self) -> f64 {
        *self.data.iter().max_by(|a, b| a.partial_cmp(b).unwrap()).unwrap()
    }

    /// Returns the index of the maximum value in the array
    ///
    /// # Returns
    ///
    /// The index of the maximum value.
    #[allow(dead_code)]
    pub fn argmax(&self) -> usize {
        self.data.iter().enumerate().max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap()).map(|(i, _)| i).unwrap()
    }

    /// Returns the minimum value in the array
    ///
    /// # Returns
    ///
    /// The minimum value as an f64.
    #[allow(dead_code)]
    pub fn min(&self) -> f64 {
        *self.data.iter().min_by(|a, b| a.partial_cmp(b).unwrap()).unwrap()
    }

    /// Creates an NDArray from a flat vector and a specified shape
    ///
    /// # Arguments
    ///
    /// * `data` - A vector of f64 values representing the array's data.
    /// * `shape` - A vector of usize values representing the dimensions of the array.
    ///
    /// # Returns
    ///
    /// A new NDArray instance.
    #[allow(dead_code)]
    pub fn from_vec_reshape(data: Vec<f64>, shape: Vec<usize>) -> Self {
        let total_size: usize = shape.iter().product();
        assert_eq!(data.len(), total_size, "Data length must match shape dimensions");
        NDArray { data, shape }
    }

    /// Extracts a single sample from a batch of N-dimensional arrays
    ///
    /// # Arguments
    ///
    /// * `sample_index` - The index of the sample to extract
    ///
    /// # Returns
    ///
    /// A new NDArray containing just the specified sample with N-1 dimensions
    #[allow(dead_code)]
    pub fn extract_sample(&self, sample_index: usize) -> Self {
        assert!(self.ndim() >= 2, "Array must have at least 2 dimensions");
        assert!(sample_index < self.shape[0], "Sample index out of bounds");

        let sample_size: usize = self.shape.iter().skip(1).product();
        let start_index = sample_index * sample_size;
        let end_index = start_index + sample_size;
        
        // Create new shape without the first dimension
        let new_shape: Vec<usize> = self.shape.iter().skip(1).cloned().collect();
        
        NDArray::new(
            self.data[start_index..end_index].to_vec(),
            new_shape
        )
    }

    /// Pretty prints an N-dimensional array
    ///
    /// # Arguments
    ///
    /// * `precision` - The number of decimal places to round each value to.
    #[allow(dead_code)]
    pub fn pretty_print(&self, precision: usize) {
        let indent_str = " ".repeat(precision);
        
        let format_value = |x: f64| -> String {
            if x == 0.0 {
                format!("{:.1}", x)
            } else {
                format!("{:.*}", precision, x)
            }
        };
        
        match self.ndim() {
            1 => println!("{}[{}]", indent_str, self.data.iter()
                .map(|&x| format_value(x))
                .collect::<Vec<_>>()
                .join(" ")),
                
            2 => {
                println!("{}[", indent_str);
                for i in 0..self.shape[0] {
                    print!("{}  [", indent_str);
                    for j in 0..self.shape[1] {
                        print!("{}", format_value(self.get_2d(i, j)));
                        if j < self.shape[1] - 1 {
                            print!(" ");
                        }
                    }
                    println!("]");
                }
                println!("{}]", indent_str);
            },
            
            _ => {
                println!("{}[", indent_str);
                for i in 0..self.shape[0] {
                    let slice = self.extract_sample(i);
                    slice.pretty_print(precision + 2);
                }
                println!("{}]", indent_str);
            }
        }
    }


    /// Returns a specific element from the array
    ///
    /// # Arguments
    ///
    /// * `index` - The index of the element to retrieve.
    ///
    /// # Returns
    ///
    /// The element at the specified index.
    #[allow(dead_code)]
    pub fn get(&self, index: usize) -> f64 {
        self.data[index]
    }

    /// Creates a 1D array with a range of numbers
    ///
    /// # Arguments
    ///
    /// * `start` - The starting value of the range (inclusive).
    /// * `stop` - The stopping value of the range (exclusive).
    /// * `step` - The step size between each value in the range.
    ///
    /// # Returns
    ///
    /// A 1D NDArray containing the range of numbers.
    #[allow(dead_code)]
    pub fn arange(start: f64, stop: f64, step: f64) -> Self {
        let mut data = Vec::new();
        let mut current = start;
        while current < stop {
            data.push(current);
            current += step;
        }
        Self::from_vec(data)
    }

        /// Creates a 1D array filled with zeros
    ///
    /// # Arguments
    ///
    /// * `size` - The number of elements in the array.
    ///
    /// # Returns
    ///
    /// A 1D NDArray filled with zeros.
    #[allow(dead_code)]
    pub fn zeros(size: usize) -> Self {
        Self::from_vec(vec![0.0; size])
    }


    /// Creates a 2D array (matrix) filled with zeros
    ///
    /// # Arguments
    ///
    /// * `rows` - The number of rows in the matrix.
    /// * `cols` - The number of columns in the matrix.
    ///
    /// # Returns
    ///
    /// A 2D NDArray filled with zeros.
    #[allow(dead_code)]
    pub fn zeros_2d(rows: usize, cols: usize) -> Self {
        Self::new(vec![0.0; rows * cols], vec![rows, cols])
    }

    /// Creates a 1D array filled with ones
    ///
    /// # Arguments
    ///
    /// * `size` - The number of elements in the array.
    ///
    /// # Returns
    ///
    /// A 1D NDArray filled with ones.
    #[allow(dead_code)]
    pub fn ones(size: usize) -> Self {
        Self::from_vec(vec![1.0; size])
    }

        /// Creates a 2D array (matrix) filled with ones
    ///
    /// # Arguments
    ///
    /// * `rows` - The number of rows in the matrix.
    /// * `cols` - The number of columns in the matrix.
    ///
    /// # Returns
    ///
    /// A 2D NDArray filled with ones.
    #[allow(dead_code)]
    pub fn ones_2d(rows: usize, cols: usize) -> Self {
        Self::new(vec![1.0; rows * cols], vec![rows, cols])
    }

    /// Creates a 1D array with evenly spaced numbers over a specified interval
    ///
    /// # Arguments
    ///
    /// * `start` - The starting value of the interval.
    /// * `end` - The ending value of the interval.
    /// * `num` - The number of evenly spaced samples to generate.
    /// * `precision` - The number of decimal places to round each value to.
    ///
    /// # Returns
    ///
    /// A 1D NDArray containing the evenly spaced numbers.
    #[allow(dead_code)]
    pub fn linspace(start: f64, end: f64, num: usize, precision: usize) -> Self {
        assert!(num > 1, "Number of samples must be greater than 1");
        let step = (end - start) / (num - 1) as f64;
        let mut data = Vec::with_capacity(num);
        let factor = 10f64.powi(precision as i32);
        for i in 0..num {
            let value = start + step * i as f64;
            let rounded_value = (value * factor).round() / factor;
            data.push(rounded_value);
        }
        Self::from_vec(data)
    }

    /// Creates an identity matrix of size `n x n`
    ///
    /// # Arguments
    ///
    /// * `n` - The size of the identity matrix.
    ///
    /// # Returns
    ///
    /// An `n x n` identity matrix as an NDArray.
    #[allow(dead_code)]
    pub fn eye(n: usize) -> Self {
        let mut data = vec![0.0; n * n];
        for i in 0..n {
            data[i * n + i] = 1.0;
        }
        Self::new(data, vec![n, n])
    }

    /// Creates a 1D array of random numbers between 0 and 1
    ///
    /// # Arguments
    ///
    /// * `size` - The number of elements in the array.
    ///
    /// # Returns
    ///
    /// A 1D NDArray filled with random numbers.
    #[allow(dead_code)]
    pub fn rand(size: usize) -> Self {
        let mut rng = rand::thread_rng();
        let data: Vec<f64> = (0..size).map(|_| rng.gen()).collect();
        Self::from_vec(data)
    }


    /// Returns a sub-matrix from a 2D array
    ///
    /// # Arguments
    ///
    /// * `row_start` - The starting row index of the sub-matrix.
    /// * `row_end` - The ending row index of the sub-matrix (exclusive).
    /// * `col_start` - The starting column index of the sub-matrix.
    /// * `col_end` - The ending column index of the sub-matrix (exclusive).
    ///
    /// # Returns
    ///
    /// A new NDArray representing the specified sub-matrix.
    #[allow(dead_code)]
    pub fn sub_matrix(&self, row_start: usize, row_end: usize, col_start: usize, col_end: usize) -> Self {
        assert_eq!(self.ndim(), 2, "sub_matrix is only applicable to 2D arrays");
        let cols = self.shape[1];
        let mut data = Vec::new();
        for row in row_start..row_end {
            for col in col_start..col_end {
                data.push(self.data[row * cols + col]);
            }
        }
        Self::new(data, vec![row_end - row_start, col_end - col_start])
    }

    /// Sets a specific element in the array
    ///
    /// # Arguments
    ///
    /// * `index` - The index of the element to set.
    /// * `value` - The value to set the element to.
    #[allow(dead_code)]
    pub fn set(&mut self, index: usize, value: f64) {
        self.data[index] = value;
    }

    /// Sets a range of elements in the array to a specific value
    ///
    /// # Arguments
    ///
    /// * `start` - The starting index of the range.
    /// * `end` - The ending index of the range (exclusive).
    /// * `value` - The value to set the elements to.
    #[allow(dead_code)]
    pub fn set_range(&mut self, start: usize, end: usize, value: f64) {
        for i in start..end {
            self.data[i] = value;
        }
    }

     /// Returns a copy of the array
    ///
    /// # Returns
    ///
    /// A new NDArray that is a copy of the original.
    #[allow(dead_code)]
    pub fn copy(&self) -> Self {
        Self::new(self.data.clone(), self.shape.clone())
    }

    /// Returns a view (slice) of the array from start to end (exclusive)
    ///
    /// # Arguments
    ///
    /// * `start` - The starting index of the view.
    /// * `end` - The ending index of the view (exclusive).
    ///
    /// # Returns
    ///
    /// A slice of f64 values representing the specified view.
    #[allow(dead_code)]
    pub fn view(&self, start: usize, end: usize) -> &[f64] {
        &self.data[start..end]
    }

        /// Returns a mutable view (slice) of the array from start to end (exclusive)
    ///
    /// # Arguments
    ///
    /// * `start` - The starting index of the view.
    /// * `end` - The ending index of the view (exclusive).
    ///
    /// # Returns
    ///
    /// A mutable slice of f64 values representing the specified view.
    #[allow(dead_code)]
    pub fn view_mut(&mut self, start: usize, end: usize) -> &mut [f64] {
        &mut self.data[start..end]
    }


    /// Returns a specific element from a 2D array
    ///
    /// # Arguments
    ///
    /// * `row` - The row index of the element.
    /// * `col` - The column index of the element.
    ///
    /// # Returns
    ///
    /// The element at the specified row and column.
    #[allow(dead_code)]
    pub fn get_2d(&self, row: usize, col: usize) -> f64 {
        assert_eq!(self.ndim(), 2, "get_2d is only applicable to 2D arrays");
        let cols = self.shape[1];
        self.data[row * cols + col]
    }

    /// Sets a specific element in a 2D array
    ///
    /// # Arguments
    ///
    /// * `row` - The row index of the element.
    /// * `col` - The column index of the element.
    /// * `value` - The value to set the element to.
    #[allow(dead_code)]
    pub fn set_2d(&mut self, row: usize, col: usize, value: f64) {
        assert_eq!(self.ndim(), 2, "set_2d is only applicable to 2D arrays");
        let cols = self.shape[1];
        self.data[row * cols + col] = value;
    }

    /// Adds a new axis to the array at the specified position
    ///
    /// # Arguments
    ///
    /// * `axis` - The position at which to add the new axis.
    ///
    /// # Returns
    ///
    /// A new NDArray with an additional axis.
    #[allow(dead_code)]
    pub fn new_axis(&self, axis: usize) -> Self {
        let mut new_shape = self.shape.clone();
        new_shape.insert(axis, 1);
        Self::new(self.data.clone(), new_shape)
    }

    /// Expands the dimensions of the array by adding a new axis at the specified index
    ///
    /// # Arguments
    ///
    /// * `axis` - The index at which to add the new axis.
    ///
    /// # Returns
    ///
    /// A new NDArray with expanded dimensions.
    #[allow(dead_code)]
    pub fn expand_dims(&self, axis: usize) -> Self {
        self.new_axis(axis)
    }

    /// Returns a boolean array indicating whether each element satisfies the condition
    ///
    /// # Arguments
    ///
    /// * `threshold` - The threshold value to compare each element against.
    ///
    /// # Returns
    ///
    /// A vector of boolean values indicating whether each element is greater than the threshold.
    #[allow(dead_code)]
    pub fn greater_than(&self, threshold: f64) -> Vec<bool> {
        self.data.iter().map(|&x| x > threshold).collect()
    }

    /// Returns a new array containing only the elements that satisfy the condition
    ///
    /// # Arguments
    ///
    /// * `condition` - A closure that takes an f64 and returns a boolean.
    ///
    /// # Returns
    ///
    /// A new NDArray containing only the elements that satisfy the condition.
    #[allow(dead_code)]
    pub fn filter(&self, condition: impl Fn(&f64) -> bool) -> Self {
        let data: Vec<f64> = self.data.iter().cloned().filter(condition).collect();
        Self::from_vec(data)
    }


    /// Returns the data type of the elements in the array
    ///
    /// # Returns
    ///
    /// A string representing the data type of the elements.
    #[allow(dead_code)]
    pub fn dtype(&self) -> &'static str {
        "f64" // Since we're using f64 for all elements
    }

    /// Returns the total number of elements in the array
    ///
    /// # Returns
    ///
    /// The total number of elements in the array.
    #[allow(dead_code)]
    pub fn size(&self) -> usize {
        self.data.len()
    }

    /// Returns the index of the minimum value in the array
    ///
    /// # Returns
    ///
    /// The index of the minimum value.
    #[allow(dead_code)]
    pub fn argmin(&self) -> usize {
        self.data.iter().enumerate().min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap()).map(|(i, _)| i).unwrap()
    }

    /// Returns a slice of the array from start to end (exclusive)
    ///
    /// # Arguments
    ///
    /// * `start` - The starting index of the slice.
    /// * `end` - The ending index of the slice (exclusive).
    ///
    /// # Returns
    ///
    /// A new NDArray containing the specified slice.
    #[allow(dead_code)]
    pub fn slice(&self, start: usize, end: usize) -> Self {
        let data = self.data[start..end].to_vec();
        Self::from_vec(data)
    }

    /// Converts an NDArray of labels into a one-hot encoded NDArray
    ///
    /// # Arguments
    ///
    /// * `labels` - An NDArray containing numerical labels
    ///
    /// # Returns
    ///
    /// A new NDArray with one-hot encoded labels where each row corresponds to one label
    ///
    /// # Panics
    ///
    /// Panics if the input contains non-integer values
    pub fn one_hot_encode(labels: &NDArray) -> Self {
        // Verify that all values are integers
        for &value in labels.data() {
            // Check if the value is effectively an integer
            if value.fract() != 0.0 {
                panic!("All values must be integers for one-hot encoding");
            }
        }

        // Convert values to integers and find unique classes
        let labels_int: Vec<i32> = labels.data()
            .iter()
            .map(|&x| x as i32)
            .collect();

        // Find min and max to determine the range of classes
        let min_label = labels_int.iter().min().unwrap();
        let max_label = labels_int.iter().max().unwrap();
        let num_classes = (max_label - min_label + 1) as usize;
        
        let mut data = vec![0.0; labels_int.len() * num_classes];
        
        // Shift indices by min_label to handle negative values
        for (i, &label) in labels_int.iter().enumerate() {
            let shifted_label = (label - min_label) as usize;
            data[i * num_classes + shifted_label] = 1.0;
        }
        
        NDArray::new(data, vec![labels_int.len(), num_classes])
    }

}

impl Add for NDArray {
    type Output = Self;

    fn add(self, other: Self) -> Self::Output {
        assert_eq!(self.shape, other.shape, "Shapes must match for element-wise addition");
        let data = self.data.iter().zip(other.data.iter()).map(|(a, b)| a + b).collect();
        NDArray::new(data, self.shape.clone())
    }
}

impl Add<f64> for NDArray {
    type Output = Self;

    fn add(self, scalar: f64) -> Self::Output {
        let data = self.data.iter().map(|a| a + scalar).collect();
        NDArray::new(data, self.shape.clone())
    }
}

impl Sub for NDArray {
    type Output = Self;

    fn sub(self, other: Self) -> Self::Output {
        assert_eq!(self.shape, other.shape, "Shapes must match for element-wise subtraction");
        let data = self.data.iter().zip(other.data.iter()).map(|(a, b)| a - b).collect();
        NDArray::new(data, self.shape.clone())
    }
}

impl Mul<f64> for NDArray {
    type Output = Self;

    fn mul(self, scalar: f64) -> Self::Output {
        let data = self.data.iter().map(|a| a * scalar).collect();
        NDArray::new(data, self.shape.clone())
    }
}

// Add std::fmt::Display implementation for convenient printing
impl std::fmt::Display for NDArray {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{}", self.display())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_new_ndarray() {
        let data = vec![1.0, 2.0, 3.0, 4.0];
        let shape = vec![2, 2];
        let array = NDArray::new(data.clone(), shape.clone());
        assert_eq!(array.data(), &data);
        assert_eq!(array.shape(), &shape);
    }

    #[test]
    fn test_from_vec() {
        let data = vec![1.0, 2.0, 3.0];
        let array = NDArray::from_vec(data.clone());
        assert_eq!(array.data(), &data);
        assert_eq!(array.shape(), &[3]);
    }

    #[test]
    fn test_arange() {
        let array = NDArray::arange(0.0, 5.0, 1.0);
        assert_eq!(array.data(), &[0.0, 1.0, 2.0, 3.0, 4.0]);
    }

    #[test]
    fn test_element_wise_addition() {
        let arr1 = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let arr2 = NDArray::from_vec(vec![4.0, 5.0, 6.0]);
        let sum = arr1.clone() + arr2;
        assert_eq!(sum.data(), &[5.0, 7.0, 9.0]);
    }

    #[test]
    fn test_scalar_multiplication() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let scaled = arr.clone() * 2.0;
        assert_eq!(scaled.data(), &[2.0, 4.0, 6.0]);
    }

    #[test]
    fn test_reshape() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
        let reshaped = arr.reshape(vec![2, 3]);
        assert_eq!(reshaped.data(), &[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
    }

    #[test]
    fn test_element_wise_subtraction() {
        let arr1 = NDArray::from_vec(vec![5.0, 7.0, 9.0]);
        let arr2 = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let diff = arr1 - arr2;
        assert_eq!(diff.data(), &[4.0, 5.0, 6.0]);
    }

    #[test]
    fn test_scalar_addition() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = arr + 1.0;
        assert_eq!(result.data(), &[2.0, 3.0, 4.0]);
    }

    #[test]
    #[allow(non_snake_case)]
    fn test_combined_operations() {
        let X = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let theta_1 = 2.0;
        let theta_0 = 1.0;
        let predictions = X.clone() * theta_1 + theta_0;
        assert_eq!(predictions.data(), &[3.0, 5.0, 7.0]);
    }


    #[test]
    fn test_one_hot_encode() {
        let labels = NDArray::from_vec(vec![0.0, 1.0, 2.0, 1.0, 0.0]);
        let one_hot = NDArray::one_hot_encode(&labels);
        
        let expected = vec![
            1.0, 0.0, 0.0,
            0.0, 1.0, 0.0,
            0.0, 0.0, 1.0,
            0.0, 1.0, 0.0,
            1.0, 0.0, 0.0
        ];
        
        assert_eq!(one_hot.shape(), &[5, 3]);
        assert_eq!(one_hot.data(), &expected);
    }

    #[test]
    fn test_one_hot_encode_negative() {
        let labels = NDArray::from_vec(vec![-1.0, 0.0, 1.0, 0.0, -1.0]);
        let one_hot = NDArray::one_hot_encode(&labels);
        
        let expected = vec![
            1.0, 0.0, 0.0,
            0.0, 1.0, 0.0,
            0.0, 0.0, 1.0,
            0.0, 1.0, 0.0,
            1.0, 0.0, 0.0
        ];
        
        assert_eq!(one_hot.shape(), &[5, 3]);
        assert_eq!(one_hot.data(), &expected);
    }

    #[test]
    #[should_panic(expected = "All values must be integers")]
    fn test_one_hot_encode_non_integer() {
        let labels = NDArray::from_vec(vec![0.0, 1.5, 2.0]);
        NDArray::one_hot_encode(&labels);
    }
}