nabla_ml/
nab_array.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
use rand::Rng;
use rand_distr::{StandardNormal, Uniform, Distribution};
use std::ops::{Add, Sub, Mul, Div};

#[derive(Debug, Clone)]
pub struct NDArray {
    pub data: Vec<f64>,
    pub shape: Vec<usize>,
}

impl NDArray {
    pub fn new(data: Vec<f64>, shape: Vec<usize>) -> Self {
        let total_size: usize = shape.iter().product();
        assert_eq!(data.len(), total_size, "Data length must match shape dimensions");
        NDArray { data, shape }
    }

    pub fn from_vec(data: Vec<f64>) -> Self {
        let len = data.len();
        Self::new(data, vec![len])
    }

    #[allow(dead_code)]
    pub fn from_matrix(data: Vec<Vec<f64>>) -> Self {
        let rows = data.len();
        let cols = data.get(0).map_or(0, |row| row.len());
        let flat_data: Vec<f64> = data.into_iter().flatten().collect();
        Self::new(flat_data, vec![rows, cols])
    }

    pub fn shape(&self) -> &[usize] {
        &self.shape
    }

    pub fn ndim(&self) -> usize {
        self.shape.len()
    }

    /// Returns a reference to the data of the array
    pub fn data(&self) -> &[f64] {
        &self.data
    }

    /// Creates a 2D array (matrix) of random numbers between 0 and 1
    ///
    /// # Arguments
    ///
    /// * `rows` - The number of rows in the matrix.
    /// * `cols` - The number of columns in the matrix.
    ///
    /// # Returns
    ///
    /// A 2D NDArray filled with random numbers.
    #[allow(dead_code)]
    pub fn rand_2d(rows: usize, cols: usize) -> Self {
        let mut rng = rand::thread_rng();
        let data: Vec<f64> = (0..rows * cols).map(|_| rng.gen()).collect();
        Self::new(data, vec![rows, cols])
    }


    /// Creates a 1D array of random numbers following a normal distribution
    ///
    /// # Arguments
    ///
    /// * `size` - The number of elements in the array.
    ///
    /// # Returns
    ///
    /// A 1D NDArray filled with random numbers from a normal distribution.
    #[allow(dead_code)]
    pub fn randn(size: usize) -> Self {
        let mut rng = rand::thread_rng();
        let data: Vec<f64> = (0..size).map(|_| rng.sample(StandardNormal)).collect();
        Self::from_vec(data)
    }

    /// Creates a 2D array (matrix) of random numbers following a normal distribution
    ///
    /// # Arguments
    ///
    /// * `rows` - The number of rows in the matrix.
    /// * `cols` - The number of columns in the matrix.
    ///
    /// # Returns
    ///
    /// A 2D NDArray filled with random numbers from a normal distribution.
    #[allow(dead_code)]
    pub fn randn_2d(rows: usize, cols: usize) -> Self {
        let mut rng = rand::thread_rng();
        let data: Vec<f64> = (0..rows * cols).map(|_| rng.sample(StandardNormal)).collect();
        Self::new(data, vec![rows, cols])
    }

    /// Creates a 1D array of random integers between `low` and `high`
    ///
    /// # Arguments
    ///
    /// * `low` - The lower bound (inclusive).
    /// * `high` - The upper bound (exclusive).
    /// * `size` - The number of elements in the array.
    ///
    /// # Returns
    ///
    /// A 1D NDArray filled with random integers.
    #[allow(dead_code)]
    pub fn randint(low: i32, high: i32, size: usize) -> Self {
        let mut rng = rand::thread_rng();
        let data: Vec<f64> = (0..size).map(|_| rng.gen_range(low..high) as f64).collect();
        Self::from_vec(data)
    }

    /// Creates a 2D array (matrix) of random integers between `low` and `high`
    ///
    /// # Arguments
    ///
    /// * `low` - The lower bound (inclusive).
    /// * `high` - The upper bound (exclusive).
    /// * `rows` - The number of rows in the matrix.
    /// * `cols` - The number of columns in the matrix.
    ///
    /// # Returns
    ///
    /// A 2D NDArray filled with random integers.
    #[allow(dead_code)]
    pub fn randint_2d(low: i32, high: i32, rows: usize, cols: usize) -> Self {
        let mut rng = rand::thread_rng();
        let data: Vec<f64> = (0..rows * cols).map(|_| rng.gen_range(low..high) as f64).collect();
        Self::new(data, vec![rows, cols])
    }

    /// Reshapes the array to the specified shape, allowing one dimension to be inferred
    ///
    /// # Arguments
    ///
    /// * `new_shape` - A vector representing the new shape, with at most one dimension as `-1`.
    ///
    /// # Returns
    ///
    /// A new NDArray with the specified shape.
    pub fn reshape(&self, new_shape: &[usize]) -> Result<Self, &'static str> {
        let total_elements = self.data.len();
        let new_total = new_shape.iter().product();
        
        if total_elements != new_total {
            return Err("New shape must have same total size as original");
        }
        
        Ok(NDArray {
            data: self.data.clone(),
            shape: new_shape.to_vec()
        })
    }

     /// Returns the maximum value in the array
    ///
    /// # Returns
    ///
    /// The maximum value as an f64.
    #[allow(dead_code)]
    pub fn max(&self) -> f64 {
        *self.data.iter().max_by(|a, b| a.partial_cmp(b).unwrap()).unwrap()
    }

    /// Returns the index of the maximum value in the array
    ///
    /// # Returns
    ///
    /// The index of the maximum value.
    // #[allow(dead_code)]
    // pub fn argmax(&self) -> usize {
    //     self.data.iter().enumerate().max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap()).map(|(i, _)| i).unwrap()
    // }

    /// Returns the indices of maximum values
    /// For 1D arrays: returns a single index
    /// For 2D arrays: returns indices along the specified axis
    pub fn argmax(&self, axis: Option<usize>) -> Vec<usize> {
        match axis {
            None => {
                // Global argmax
                vec![self.data.iter()
                    .enumerate()
                    .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
                    .map(|(i, _)| i)
                    .unwrap()]
            },
            Some(ax) => {
                if ax >= self.shape.len() {
                    panic!("Axis {} out of bounds for shape {:?}", ax, self.shape);
                }
                // Axis-wise argmax
                match ax {
                    0 => {
                        let cols = self.shape[1];
                        let mut indices = Vec::with_capacity(cols);
                        for j in 0..cols {
                            let mut max_idx = 0;
                            let mut max_val = self.data[j];
                            for i in 1..self.shape[0] {
                                let val = self.data[i * cols + j];
                                if val > max_val {
                                    max_val = val;
                                    max_idx = i;
                                }
                            }
                            indices.push(max_idx);
                        }
                        indices
                    },
                    1 => {
                        let cols = self.shape[1];
                        let mut indices = Vec::with_capacity(self.shape[0]);
                        for i in 0..self.shape[0] {
                            let row_start = i * cols;
                            let mut max_idx = 0;
                            let mut max_val = self.data[row_start];
                            for j in 1..cols {
                                let val = self.data[row_start + j];
                                if val > max_val {
                                    max_val = val;
                                    max_idx = j;
                                }
                            }
                            indices.push(max_idx);
                        }
                        indices
                    },
                    _ => panic!("Unsupported axis {}", ax)
                }
            }
        }
    }


    /// Returns the minimum value in the array
    ///
    /// # Returns
    ///
    /// The minimum value as an f64.
    #[allow(dead_code)]
    pub fn min(&self) -> f64 {
        *self.data.iter().min_by(|a, b| a.partial_cmp(b).unwrap()).unwrap()
    }

    /// Creates an NDArray from a flat vector and a specified shape
    ///
    /// # Arguments
    ///
    /// * `data` - A vector of f64 values representing the array's data.
    /// * `shape` - A vector of usize values representing the dimensions of the array.
    ///
    /// # Returns
    ///
    /// A new NDArray instance.
    #[allow(dead_code)]
    pub fn from_vec_reshape(data: Vec<f64>, shape: Vec<usize>) -> Self {
        let total_size: usize = shape.iter().product();
        assert_eq!(data.len(), total_size, "Data length must match shape dimensions");
        NDArray { data, shape }
    }

    /// Extracts a single sample from a batch of N-dimensional arrays
    ///
    /// # Arguments
    ///
    /// * `sample_index` - The index of the sample to extract
    ///
    /// # Returns
    ///
    /// A new NDArray containing just the specified sample with N-1 dimensions
    #[allow(dead_code)]
    pub fn extract_sample(&self, sample_index: usize) -> Self {
        assert!(self.ndim() >= 2, "Array must have at least 2 dimensions");
        assert!(sample_index < self.shape[0], "Sample index out of bounds");

        let sample_size: usize = self.shape.iter().skip(1).product();
        let start_index = sample_index * sample_size;
        let end_index = start_index + sample_size;
        
        // Create new shape without the first dimension
        let new_shape: Vec<usize> = self.shape.iter().skip(1).cloned().collect();
        
        NDArray::new(
            self.data[start_index..end_index].to_vec(),
            new_shape
        )
    }

    /// Pretty prints an N-dimensional array
    ///
    /// # Arguments
    ///
    /// * `precision` - The number of decimal places to round each value to.
    #[allow(dead_code)]
    pub fn pretty_print(&self, precision: usize) {
        let indent_str = " ".repeat(precision);
        
        let format_value = |x: f64| -> String {
            if x == 0.0 {
                format!("{:.1}", x)
            } else {
                format!("{:.*}", precision, x)
            }
        };
        
        match self.ndim() {
            1 => println!("{}[{}]", indent_str, self.data.iter()
                .map(|&x| format_value(x))
                .collect::<Vec<_>>()
                .join(" ")),
                
            2 => {
                println!("{}[", indent_str);
                for i in 0..self.shape[0] {
                    print!("{}  [", indent_str);
                    for j in 0..self.shape[1] {
                        print!("{}", format_value(self.get_2d(i, j)));
                        if j < self.shape[1] - 1 {
                            print!(" ");
                        }
                    }
                    println!("]");
                }
                println!("{}]", indent_str);
            },
            
            _ => {
                println!("{}[", indent_str);
                for i in 0..self.shape[0] {
                    let slice = self.extract_sample(i);
                    slice.pretty_print(precision + 2);
                }
                println!("{}]", indent_str);
            }
        }
    }


    /// Returns a specific element from the array
    ///
    /// # Arguments
    ///
    /// * `index` - The index of the element to retrieve.
    ///
    /// # Returns
    ///
    /// The element at the specified index.
    #[allow(dead_code)]
    pub fn get(&self, index: usize) -> f64 {
        self.data[index]
    }

    /// Creates a 1D array with a range of numbers
    ///
    /// # Arguments
    ///
    /// * `start` - The starting value of the range (inclusive).
    /// * `stop` - The stopping value of the range (exclusive).
    /// * `step` - The step size between each value in the range.
    ///
    /// # Returns
    ///
    /// A 1D NDArray containing the range of numbers.
    #[allow(dead_code)]
    pub fn arange(start: f64, stop: f64, step: f64) -> Self {
        let mut data = Vec::new();
        let mut current = start;
        while current < stop {
            data.push(current);
            current += step;
        }
        Self::from_vec(data)
    }

        /// Creates a 1D array filled with zeros
    ///
    /// # Arguments
    ///
    /// * `size` - The number of elements in the array.
    ///
    /// # Returns
    ///
    /// A 1D NDArray filled with zeros.
    #[allow(dead_code)]
    pub fn zeros(shape: Vec<usize>) -> Self {
        let total_size: usize = shape.iter().product();
        NDArray {
            data: vec![0.0; total_size],
            shape,
        }
    }


    /// Creates a 2D array (matrix) filled with zeros
    ///
    /// # Arguments
    ///
    /// * `rows` - The number of rows in the matrix.
    /// * `cols` - The number of columns in the matrix.
    ///
    /// # Returns
    ///
    /// A 2D NDArray filled with zeros.
    #[allow(dead_code)]
    pub fn zeros_2d(rows: usize, cols: usize) -> Self {
        Self::new(vec![0.0; rows * cols], vec![rows, cols])
    }

    /// Creates a 1D array filled with ones
    ///
    /// # Arguments
    ///
    /// * `size` - The number of elements in the array.
    ///
    /// # Returns
    ///
    /// A 1D NDArray filled with ones.
    #[allow(dead_code)]
    pub fn ones(size: usize) -> Self {
        Self::from_vec(vec![1.0; size])
    }

        /// Creates a 2D array (matrix) filled with ones
    ///
    /// # Arguments
    ///
    /// * `rows` - The number of rows in the matrix.
    /// * `cols` - The number of columns in the matrix.
    ///
    /// # Returns
    ///
    /// A 2D NDArray filled with ones.
    #[allow(dead_code)]
    pub fn ones_2d(rows: usize, cols: usize) -> Self {
        Self::new(vec![1.0; rows * cols], vec![rows, cols])
    }

    /// Creates a 1D array with evenly spaced numbers over a specified interval
    ///
    /// # Arguments
    ///
    /// * `start` - The starting value of the interval.
    /// * `end` - The ending value of the interval.
    /// * `num` - The number of evenly spaced samples to generate.
    /// * `precision` - The number of decimal places to round each value to.
    ///
    /// # Returns
    ///
    /// A 1D NDArray containing the evenly spaced numbers.
    #[allow(dead_code)]
    pub fn linspace(start: f64, end: f64, num: usize, precision: usize) -> Self {
        assert!(num > 1, "Number of samples must be greater than 1");
        let step = (end - start) / (num - 1) as f64;
        let mut data = Vec::with_capacity(num);
        let factor = 10f64.powi(precision as i32);
        for i in 0..num {
            let value = start + step * i as f64;
            let rounded_value = (value * factor).round() / factor;
            data.push(rounded_value);
        }
        Self::from_vec(data)
    }

    /// Creates an identity matrix of size `n x n`
    ///
    /// # Arguments
    ///
    /// * `n` - The size of the identity matrix.
    ///
    /// # Returns
    ///
    /// An `n x n` identity matrix as an NDArray.
    #[allow(dead_code)]
    pub fn eye(n: usize) -> Self {
        let mut data = vec![0.0; n * n];
        for i in 0..n {
            data[i * n + i] = 1.0;
        }
        Self::new(data, vec![n, n])
    }

    /// Creates a 1D array of random numbers between 0 and 1
    ///
    /// # Arguments
    ///
    /// * `size` - The number of elements in the array.
    ///
    /// # Returns
    ///
    /// A 1D NDArray filled with random numbers.
    #[allow(dead_code)]
    pub fn rand(size: usize) -> Self {
        let mut rng = rand::thread_rng();
        let data: Vec<f64> = (0..size).map(|_| rng.gen()).collect();
        Self::from_vec(data)
    }


    /// Returns a sub-matrix from a 2D array
    ///
    /// # Arguments
    ///
    /// * `row_start` - The starting row index of the sub-matrix.
    /// * `row_end` - The ending row index of the sub-matrix (exclusive).
    /// * `col_start` - The starting column index of the sub-matrix.
    /// * `col_end` - The ending column index of the sub-matrix (exclusive).
    ///
    /// # Returns
    ///
    /// A new NDArray representing the specified sub-matrix.
    #[allow(dead_code)]
    pub fn sub_matrix(&self, row_start: usize, row_end: usize, col_start: usize, col_end: usize) -> Self {
        assert_eq!(self.ndim(), 2, "sub_matrix is only applicable to 2D arrays");
        let cols = self.shape[1];
        let mut data = Vec::new();
        for row in row_start..row_end {
            for col in col_start..col_end {
                data.push(self.data[row * cols + col]);
            }
        }
        Self::new(data, vec![row_end - row_start, col_end - col_start])
    }

    /// Sets a specific element in the array
    ///
    /// # Arguments
    ///
    /// * `index` - The index of the element to set.
    /// * `value` - The value to set the element to.
    #[allow(dead_code)]
    pub fn set(&mut self, index: usize, value: f64) {
        self.data[index] = value;
    }

    /// Sets a range of elements in the array to a specific value
    ///
    /// # Arguments
    ///
    /// * `start` - The starting index of the range.
    /// * `end` - The ending index of the range (exclusive).
    /// * `value` - The value to set the elements to.
    #[allow(dead_code)]
    pub fn set_range(&mut self, start: usize, end: usize, value: f64) {
        for i in start..end {
            self.data[i] = value;
        }
    }

     /// Returns a copy of the array
    ///
    /// # Returns
    ///
    /// A new NDArray that is a copy of the original.
    #[allow(dead_code)]
    pub fn copy(&self) -> Self {
        Self::new(self.data.clone(), self.shape.clone())
    }

    /// Returns a view (slice) of the array from start to end (exclusive)
    ///
    /// # Arguments
    ///
    /// * `start` - The starting index of the view.
    /// * `end` - The ending index of the view (exclusive).
    ///
    /// # Returns
    ///
    /// A slice of f64 values representing the specified view.
    #[allow(dead_code)]
    pub fn view(&self, start: usize, end: usize) -> &[f64] {
        &self.data[start..end]
    }

        /// Returns a mutable view (slice) of the array from start to end (exclusive)
    ///
    /// # Arguments
    ///
    /// * `start` - The starting index of the view.
    /// * `end` - The ending index of the view (exclusive).
    ///
    /// # Returns
    ///
    /// A mutable slice of f64 values representing the specified view.
    #[allow(dead_code)]
    pub fn view_mut(&mut self, start: usize, end: usize) -> &mut [f64] {
        &mut self.data[start..end]
    }


    /// Returns a specific element from a 2D array
    ///
    /// # Arguments
    ///
    /// * `row` - The row index of the element.
    /// * `col` - The column index of the element.
    ///
    /// # Returns
    ///
    /// The element at the specified row and column.
    #[allow(dead_code)]
    pub fn get_2d(&self, row: usize, col: usize) -> f64 {
        assert_eq!(self.ndim(), 2, "get_2d is only applicable to 2D arrays");
        let cols = self.shape[1];
        self.data[row * cols + col]
    }

    /// Sets a specific element in a 2D array
    ///
    /// # Arguments
    ///
    /// * `row` - The row index of the element.
    /// * `col` - The column index of the element.
    /// * `value` - The value to set the element to.
    #[allow(dead_code)]
    pub fn set_2d(&mut self, row: usize, col: usize, value: f64) {
        assert_eq!(self.ndim(), 2, "set_2d is only applicable to 2D arrays");
        let cols = self.shape[1];
        self.data[row * cols + col] = value;
    }

    /// Adds a new axis to the array at the specified position
    ///
    /// # Arguments
    ///
    /// * `axis` - The position at which to add the new axis.
    ///
    /// # Returns
    ///
    /// A new NDArray with an additional axis.
    #[allow(dead_code)]
    pub fn new_axis(&self, axis: usize) -> Self {
        let mut new_shape = self.shape.clone();
        new_shape.insert(axis, 1);
        Self::new(self.data.clone(), new_shape)
    }

    /// Expands the dimensions of the array by adding a new axis at the specified index
    ///
    /// # Arguments
    ///
    /// * `axis` - The index at which to add the new axis.
    ///
    /// # Returns
    ///
    /// A new NDArray with expanded dimensions.
    #[allow(dead_code)]
    pub fn expand_dims(&self, axis: usize) -> Self {
        self.new_axis(axis)
    }

    /// Returns a boolean array indicating whether each element satisfies the condition
    ///
    /// # Arguments
    ///
    /// * `threshold` - The threshold value to compare each element against.
    ///
    /// # Returns
    ///
    /// A vector of boolean values indicating whether each element is greater than the threshold.
    #[allow(dead_code)]
    pub fn greater_than(&self, threshold: f64) -> Vec<bool> {
        self.data.iter().map(|&x| x > threshold).collect()
    }

    /// Returns a new array containing only the elements that satisfy the condition
    ///
    /// # Arguments
    ///
    /// * `condition` - A closure that takes an f64 and returns a boolean.
    ///
    /// # Returns
    ///
    /// A new NDArray containing only the elements that satisfy the condition.
    #[allow(dead_code)]
    pub fn filter(&self, condition: impl Fn(&f64) -> bool) -> Self {
        let data: Vec<f64> = self.data.iter().cloned().filter(condition).collect();
        Self::from_vec(data)
    }


    /// Returns the data type of the elements in the array
    ///
    /// # Returns
    ///
    /// A string representing the data type of the elements.
    #[allow(dead_code)]
    pub fn dtype(&self) -> &'static str {
        "f64" // Since we're using f64 for all elements
    }

    /// Returns the total number of elements in the array
    ///
    /// # Returns
    ///
    /// The total number of elements in the array.
    #[allow(dead_code)]
    pub fn size(&self) -> usize {
        self.data.len()
    }

    /// Returns the index of the minimum value in the array
    ///
    /// # Returns
    ///
    /// The index of the minimum value.
    #[allow(dead_code)]
    pub fn argmin(&self) -> usize {
        self.data.iter().enumerate().min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap()).map(|(i, _)| i).unwrap()
    }

    /// Returns a slice of the array from start to end (exclusive)
    ///
    /// # Arguments
    ///
    /// * `start` - The starting index of the slice.
    /// * `end` - The ending index of the slice (exclusive).
    ///
    /// # Returns
    ///
    /// A new NDArray containing the specified slice.
    #[allow(dead_code)]
    pub fn slice(&self, start: usize, end: usize) -> Self {
        println!("Slicing array:");
        println!("  Original shape: {:?}", self.shape);
        println!("  Start: {}, End: {}", start, end);

        let mut new_shape = self.shape.clone();
        new_shape[0] = end - start;

        if self.ndim() == 2 {
            let cols = self.shape[1];
            let start_idx = start * cols;
            let end_idx = end * cols;
            println!("  2D array: keeping columns, new shape will be: {:?}", new_shape);
            
            let sliced_data = self.data[start_idx..end_idx].to_vec();
            println!("  Sliced data length: {}", sliced_data.len());
            
            NDArray::new(sliced_data, new_shape)
        } else {
            println!("  1D array: simple slice");
            NDArray::new(self.data[start..end].to_vec(), new_shape)
        }
    }

    /// Converts an NDArray of labels into a one-hot encoded NDArray
    ///
    /// # Arguments
    ///
    /// * `labels` - An NDArray containing numerical labels
    ///
    /// # Returns
    ///
    /// A new NDArray with one-hot encoded labels where each row corresponds to one label
    ///
    /// # Panics
    ///
    /// Panics if the input contains non-integer values
    pub fn one_hot_encode(labels: &NDArray) -> Self {
        // Verify that all values are integers
        for &value in labels.data() {
            // Check if the value is effectively an integer
            if value.fract() != 0.0 {
                panic!("All values must be integers for one-hot encoding");
            }
        }

        // Convert values to integers and find unique classes
        let labels_int: Vec<i32> = labels.data()
            .iter()
            .map(|&x| x as i32)
            .collect();

        // Find min and max to determine the range of classes
        let min_label = labels_int.iter().min().unwrap();
        let max_label = labels_int.iter().max().unwrap();
        let num_classes = (max_label - min_label + 1) as usize;
        
        let mut data = vec![0.0; labels_int.len() * num_classes];
        
        // Shift indices by min_label to handle negative values
        for (i, &label) in labels_int.iter().enumerate() {
            let shifted_label = (label - min_label) as usize;
            data[i * num_classes + shifted_label] = 1.0;
        }
        
        NDArray::new(data, vec![labels_int.len(), num_classes])
    }

    /// Transposes a 2D array (matrix)
    ///
    /// # Returns
    ///
    /// A new NDArray with transposed dimensions.
    pub fn transpose(&self) -> Result<Self, &'static str> {
        if self.shape.len() != 2 {
            return Err("transpose currently only supports 2D arrays");
        }
        
        let (rows, cols) = (self.shape[0], self.shape[1]);
        let mut new_data = vec![0.0; rows * cols];
        
        for i in 0..rows {
            for j in 0..cols {
                new_data[j * rows + i] = self.data[i * cols + j];
            }
        }
        
        Ok(NDArray {
            data: new_data,
            shape: vec![cols, rows]
        })
    }

    /// Performs matrix multiplication (dot product) between two 2D arrays
    ///
    /// # Arguments
    ///
    /// * `other` - The other NDArray to multiply with.
    ///
    /// # Returns
    ///
    /// A new NDArray resulting from the matrix multiplication.
    pub fn dot(&self, other: &NDArray) -> Self {
        assert_eq!(self.ndim(), 2, "Dot product is only defined for 2D arrays");
        assert_eq!(other.ndim(), 2, "Dot product is only defined for 2D arrays");
        assert_eq!(self.shape[1], other.shape[0], "Inner dimensions must match for dot product");

        let rows = self.shape[0];
        let cols = other.shape[1];
        let mut result_data = vec![0.0; rows * cols];

        for i in 0..rows {
            for j in 0..cols {
                let mut sum = 0.0;
                for k in 0..self.shape[1] {
                    sum += self.data[i * self.shape[1] + k] * other.data[k * other.shape[1] + j];
                }
                result_data[i * cols + j] = sum;
            }
        }

        NDArray::new(result_data, vec![rows, cols])
    }

    /// Performs element-wise multiplication between two arrays
    ///
    /// # Arguments
    ///
    /// * `other` - The other NDArray to multiply with.
    ///
    /// # Returns
    ///
    /// A new NDArray resulting from the element-wise multiplication.
    pub fn multiply(&self, other: &NDArray) -> Self {
        assert_eq!(self.shape, other.shape, "Shapes must match for element-wise multiplication");

        let data: Vec<f64> = self.data.iter().zip(other.data.iter()).map(|(a, b)| a * b).collect();
        NDArray::new(data, self.shape.clone())
    }

    /// Subtracts a scalar from each element in the array
    ///
    /// # Arguments
    ///
    /// * `scalar` - The scalar value to subtract.
    ///
    /// # Returns
    ///
    /// A new NDArray with the scalar subtracted from each element.
    pub fn scalar_sub(&self, scalar: f64) -> Self {
        let data: Vec<f64> = self.data.iter().map(|&x| x - scalar).collect();
        NDArray::new(data, self.shape.clone())
    }

    /// Multiplies each element in the array by a scalar
    ///
    /// # Arguments
    ///
    /// * `scalar` - The scalar value to multiply.
    ///
    /// # Returns
    ///
    /// A new NDArray with each element multiplied by the scalar.
    pub fn multiply_scalar(&self, scalar: f64) -> Self {
        let data: Vec<f64> = self.data.iter().map(|&x| x * scalar).collect();
        NDArray::new(data, self.shape.clone())
    }

    /// Clips the values in the array to a specified range
    ///
    /// # Arguments
    ///
    /// * `min` - The minimum value to clip to.
    /// * `max` - The maximum value to clip to.
    ///
    /// # Returns
    ///
    /// A new NDArray with values clipped to the specified range.
    pub fn clip(&self, min: f64, max: f64) -> Self {
        let data: Vec<f64> = self.data.iter().map(|&x| x.clamp(min, max)).collect();
        NDArray::new(data, self.shape.clone())
    }

    /// Performs element-wise division between two arrays
    ///
    /// # Arguments
    ///
    /// * `other` - The other NDArray to divide by.
    ///
    /// # Returns
    ///
    /// A new NDArray resulting from the element-wise division.
    pub fn divide(&self, other: &NDArray) -> Self {
        assert_eq!(self.shape, other.shape, "Shapes must match for element-wise division");

        let data: Vec<f64> = self.data.iter().zip(other.data.iter()).map(|(a, b)| a / b).collect();
        NDArray::new(data, self.shape.clone())
    }

    /// Divides each element in the array by a scalar
    ///
    /// # Arguments
    ///
    /// * `scalar` - The scalar value to divide by.
    ///
    /// # Returns
    ///
    /// A new NDArray with each element divided by the scalar.
    pub fn divide_scalar(&self, scalar: f64) -> Self {
        let data: Vec<f64> = self.data.iter().map(|&x| x / scalar).collect();
        NDArray::new(data, self.shape.clone())
    }

    /// Sums the elements of the array along a specified axis
    ///
    /// # Arguments
    ///
    /// * `axis` - The axis along which to sum the elements.
    ///
    /// # Returns
    ///
    /// A new NDArray with the summed elements along the specified axis.
    pub fn sum_axis(&self, axis: usize) -> Self {
        if axis >= self.shape.len() {
            panic!("Axis {} out of bounds for shape {:?}", axis, self.shape);
        }

        match axis {
            0 => {
                let cols = self.shape[1];
                let mut result = vec![0.0; cols];
                
                for j in 0..cols {
                    for i in 0..self.shape[0] {
                        result[j] += self.data[i * cols + j];
                    }
                }
                
                NDArray::new(result, vec![1, cols])
            },
            1 => {
                let cols = self.shape[1];
                let mut result = vec![0.0; self.shape[0]];
                
                for i in 0..self.shape[0] {
                    for j in 0..cols {
                        result[i] += self.data[i * cols + j];
                    }
                }
                
                NDArray::new(result, vec![self.shape[0], 1])
            },
            _ => panic!("Unsupported axis {}", axis)
        }
    }

    /// Performs element-wise subtraction between two arrays
    ///
    /// # Arguments
    ///
    /// * `other` - The other NDArray to subtract.
    ///
    /// # Returns
    ///
    /// A new NDArray resulting from the element-wise subtraction.
    pub fn subtract(&self, other: &NDArray) -> Self {
        assert_eq!(self.shape, other.shape, "Shapes must match for element-wise subtraction");

        let data: Vec<f64> = self.data.iter().zip(other.data.iter()).map(|(a, b)| a - b).collect();
        NDArray::new(data, self.shape.clone())
    }

    /// Adds a scalar to each element in the array
    ///
    /// # Arguments
    ///
    /// * `scalar` - The scalar value to add.
    ///
    /// # Returns
    ///
    /// A new NDArray with the scalar added to each element.
    pub fn add_scalar(&self, scalar: f64) -> Self {
        let data: Vec<f64> = self.data.iter().map(|&x| x + scalar).collect();
        NDArray::new(data, self.shape.clone())
    }

    /// Calculates the natural logarithm of each element in the array
    ///
    /// # Returns
    ///
    /// A new NDArray with the natural logarithm of each element.
    pub fn log(&self) -> Self {
        let data: Vec<f64> = self.data.iter().map(|&x| x.ln()).collect();
        NDArray::new(data, self.shape.clone())
    }

    /// Sums all elements in the array
    ///
    /// # Returns
    ///
    /// The sum of all elements as an f64.
    pub fn sum(&self) -> f64 {
        self.data.iter().sum()
    }

    pub fn pad_to_size(&self, target_size: usize) -> Self {
        if self.shape[0] >= target_size {
            return self.clone();
        }

        let mut new_shape = self.shape.clone();
        new_shape[0] = target_size;
        let total_size: usize = new_shape.iter().product();
        
        // Create new data vector with zeros
        let mut new_data = vec![0.0; total_size];
        
        // Copy existing data
        let row_size = self.shape.iter().skip(1).product::<usize>();
        let existing_data_size = self.shape[0] * row_size;
        new_data[..existing_data_size].copy_from_slice(&self.data);
        
        NDArray::new(new_data, new_shape)
    }

    /// Add layer normalization
    pub fn layer_normalize(&self) -> Self {
        let (rows, cols) = (self.shape[0], self.shape[1]);
        let mut result = vec![0.0; self.data.len()];
        
        for i in 0..rows {
            let start = i * cols;
            let end = start + cols;
            let row = &self.data[start..end];
            
            // Calculate mean and variance
            let mean: f64 = row.iter().sum::<f64>() / cols as f64;
            let var: f64 = row.iter()
                .map(|&x| (x - mean).powi(2))
                .sum::<f64>() / cols as f64;
            let std = (var + 1e-5).sqrt();
            
            // Normalize
            for j in 0..cols {
                result[start + j] = (row[j] - mean) / std;
            }
        }
        
        NDArray::new(result, self.shape.clone())
    }

    /// Add batch normalization
    pub fn batch_normalize(&self) -> Self {
        let (batch_size, features) = (self.shape[0], self.shape[1]);
        let mut result = vec![0.0; self.data.len()];
        
        // For each feature
        for j in 0..features {
            // Calculate mean and variance across the batch
            let mut mean = 0.0;
            let mut var = 0.0;
            
            // Calculate mean
            for i in 0..batch_size {
                mean += self.data[i * features + j];
            }
            mean /= batch_size as f64;
            
            // Calculate variance
            for i in 0..batch_size {
                var += (self.data[i * features + j] - mean).powi(2);
            }
            var /= batch_size as f64;
            
            // Normalize
            let std = (var + 1e-5).sqrt();
            for i in 0..batch_size {
                result[i * features + j] = (self.data[i * features + j] - mean) / std;
            }
        }
        
        NDArray::new(result, self.shape.clone())
    }


    pub fn add(self, other: &NDArray) -> Self {
        println!("Adding arrays:");
        println!("  Left shape: {:?}", self.shape);
        println!("  Right shape: {:?}", other.shape);

        // Handle broadcasting for shapes like [N, M] + [1, M]
        if self.shape.len() == other.shape.len() && 
           other.shape[0] == 1 && 
           self.shape[1] == other.shape[1] {
            
            println!("  Performing broadcasting addition");
            let mut result_data = Vec::with_capacity(self.data.len());
            let cols = other.shape[1];
            
            // Add the broadcasted row to each row of self
            for i in 0..self.shape[0] {
                for j in 0..cols {
                    result_data.push(self.data[i * cols + j] + other.data[j]);
                }
            }
            
            let result = NDArray::new(result_data, self.shape.clone());
            println!("  Result shape: {:?}", result.shape);
            return result;
        }
        
        // Regular element-wise addition for matching shapes
        if self.shape != other.shape {
            panic!("Shapes must match for element-wise addition\n  left: {:?}\n right: {:?}", 
                   self.shape, other.shape);
        }

        let data: Vec<f64> = self.data.iter()
            .zip(other.data.iter())
            .map(|(a, b)| a + b)
            .collect();

        NDArray::new(data, self.shape.clone())
    }

    /// Returns the mean of the array
    pub fn mean(&self) -> f64 {
        self.sum() / self.data.len() as f64
    }

    /// Returns the standard deviation of the array
    pub fn std(&self) -> f64 {
        let mean = self.mean();
        let variance = self.data.iter()
            .map(|&x| (x - mean).powi(2))
            .sum::<f64>() / self.data.len() as f64;
        variance.sqrt()
    }

    /// Returns the minimum value along the specified axis
    pub fn min_axis(&self, axis: usize) -> Result<Self, &'static str> {
        if axis >= self.shape.len() {
            return Err("Axis out of bounds");
        }

        match axis {
            0 => {
                if self.shape.len() != 2 {
                    return Err("min_axis(0) requires 2D array");
                }
                let cols = self.shape[1];
                let mut result = vec![f64::INFINITY; cols];
                
                for j in 0..cols {
                    for i in 0..self.shape[0] {
                        result[j] = result[j].min(self.data[i * cols + j]);
                    }
                }
                
                Ok(NDArray::new(result, vec![1, cols]))
            },
            1 => {
                if self.shape.len() != 2 {
                    return Err("min_axis(1) requires 2D array");
                }
                let cols = self.shape[1];
                let mut result = vec![f64::INFINITY; self.shape[0]];
                
                for i in 0..self.shape[0] {
                    for j in 0..cols {
                        result[i] = result[i].min(self.data[i * cols + j]);
                    }
                }
                
                Ok(NDArray::new(result, vec![self.shape[0], 1]))
            },
            _ => Err("Unsupported axis")
        }
    }

    /// Concatenates two arrays along the specified axis
    pub fn concatenate(&self, other: &Self, axis: usize) -> Result<Self, &'static str> {
        if axis >= self.shape.len() {
            return Err("Axis out of bounds");
        }
        
        if self.shape.len() != other.shape.len() {
            return Err("Arrays must have same number of dimensions");
        }
        
        // Check that all dimensions except axis match
        for (i, (&s1, &s2)) in self.shape.iter().zip(other.shape.iter()).enumerate() {
            if i != axis && s1 != s2 {
                return Err("All dimensions except concatenation axis must match");
            }
        }
        
        let mut new_shape = self.shape.clone();
        new_shape[axis] += other.shape[axis];
        
        let mut new_data = Vec::with_capacity(self.data.len() + other.data.len());
        
        match axis {
            0 => {
                new_data.extend_from_slice(&self.data);
                new_data.extend_from_slice(&other.data);
            },
            1 => {
                let rows = self.shape[0];
                let cols1 = self.shape[1];
                let cols2 = other.shape[1];
                
                for i in 0..rows {
                    new_data.extend_from_slice(&self.data[i * cols1..(i + 1) * cols1]);
                    new_data.extend_from_slice(&other.data[i * cols2..(i + 1) * cols2]);
                }
            },
            _ => return Err("Unsupported axis")
        }
        
        Ok(NDArray::new(new_data, new_shape))
    }

    pub fn map<F>(&self, f: F) -> Self 
    where F: Fn(f64) -> f64 
    {
        let new_data: Vec<f64> = self.data.iter().map(|&x| f(x)).collect();
        NDArray::new(new_data, self.shape.clone())
    }

    /// Returns the absolute values of array elements
    ///
    /// # Returns
    ///
    /// A new NDArray with absolute values
    pub fn abs(&self) -> Self {
        self.map(|x| x.abs())
    }

    /// Returns the exponential power of array elements
    ///
    /// # Returns
    ///
    /// A new NDArray with exponential values
    pub fn power(&self, n: f64) -> Self {
        self.map(|x| x.powf(n))
    }

    /// Returns the cumulative sum of array elements
    ///
    /// # Returns
    ///
    /// A new NDArray with cumulative sums
    pub fn cumsum(&self) -> Self {
        let mut result = Vec::with_capacity(self.data.len());
        let mut sum = 0.0;
        for &x in &self.data {
            sum += x;
            result.push(sum);
        }
        NDArray::new(result, self.shape.clone())
    }

    /// Returns array with elements rounded to specified decimals
    ///
    /// # Arguments
    ///
    /// * `decimals` - Number of decimal places to round to
    ///
    /// # Returns
    ///
    /// A new NDArray with rounded values
    pub fn round(&self, decimals: i32) -> Self {
        let factor = 10.0_f64.powi(decimals);
        self.map(|x| (x * factor).round() / factor)
    }

    /// Returns indices that would sort the array
    ///
    /// # Returns
    ///
    /// A vector of indices that would sort the array
    pub fn argsort(&self) -> Vec<usize> {
        let mut indices: Vec<usize> = (0..self.data.len()).collect();
        indices.sort_by(|&i, &j| self.data[i].partial_cmp(&self.data[j]).unwrap());
        indices
    }

    /// Returns unique elements of the array
    ///
    /// # Returns
    ///
    /// A new NDArray containing unique elements in sorted order
    pub fn unique(&self) -> Self {
        let mut unique_vals = self.data.clone();
        unique_vals.sort_by(|a, b| a.partial_cmp(b).unwrap());
        unique_vals.dedup();
        NDArray::new(unique_vals.to_vec(), vec![unique_vals.len()])
    }

    /// Applies a condition element-wise and returns a new array
    ///
    /// # Arguments
    ///
    /// * `condition` - Function that returns true/false for each element
    /// * `x` - Value to use where condition is true
    /// * `y` - Value to use where condition is false
    ///
    /// # Returns
    ///
    /// A new NDArray with values chosen based on condition
    pub fn where_cond<F>(&self, condition: F, x: f64, y: f64) -> Self 
    where F: Fn(f64) -> bool 
    {
        self.map(|val| if condition(val) { x } else { y })
    }

    /// Returns the median value of the array
    ///
    /// # Returns
    ///
    /// The median value as f64
    pub fn median(&self) -> f64 {
        let mut sorted = self.data.clone();
        sorted.sort_by(|a, b| a.partial_cmp(b).unwrap());
        let mid = sorted.len() / 2;
        if sorted.len() % 2 == 0 {
            (sorted[mid - 1] + sorted[mid]) / 2.0
        } else {
            sorted[mid]
        }
    }

    /// Returns the maximum values along the specified axis
    ///
    /// # Arguments
    ///
    /// * `axis` - Axis along which to find maximum values
    ///
    /// # Returns
    ///
    /// NDArray containing maximum values along specified axis
    pub fn max_axis(&self, axis: usize) -> Self {
        if axis >= self.shape.len() {
            panic!("Axis {} out of bounds for shape {:?}", axis, self.shape);
        }

        // Handle 1D array case
        if self.shape.len() == 1 {
            return NDArray::new(vec![self.data.iter().cloned().fold(f64::NEG_INFINITY, f64::max)], vec![1]);
        }

        // Handle 2D array case
        match axis {
            0 => {
                let cols = self.shape[1];
                let mut result = vec![f64::NEG_INFINITY; cols];
                
                for j in 0..cols {
                    for i in 0..self.shape[0] {
                        result[j] = result[j].max(self.data[i * cols + j]);
                    }
                }
                
                NDArray::new(result, vec![1, cols])
            },
            1 => {
                let cols = self.shape[1];
                let mut result = vec![f64::NEG_INFINITY; self.shape[0]];
                
                for i in 0..self.shape[0] {
                    for j in 0..cols {
                        result[i] = result[i].max(self.data[i * cols + j]);
                    }
                }
                
                NDArray::new(result, vec![self.shape[0], 1])
            },
            _ => panic!("Unsupported axis {}", axis)
        }
    }

    /// Returns a string representation of the array
    pub fn display(&self) -> String {
        format!("NDArray(shape={:?}, data={:?})", self.shape, self.data)
    }

    /// Creates a new NDArray with random uniform values between 0 and 1
    /// 
    /// # Arguments
    /// 
    /// * `shape` - Shape of the array
    /// 
    /// # Example
    /// ```
    /// use nabla_ml::nab_array::NDArray;
    /// 
    /// let arr = NDArray::rand_uniform(&[2, 3]);
    /// assert_eq!(arr.shape(), vec![2, 3]);
    /// ```
    pub fn rand_uniform(shape: &[usize]) -> Self {
        let size: usize = shape.iter().product();
        let uniform = Uniform::new(0.0, 1.0);
        let mut rng = rand::thread_rng();
        
        let data: Vec<f64> = (0..size)
            .map(|_| uniform.sample(&mut rng))
            .collect();

        Self::new(data, shape.to_vec())
    }

    /// Calculates the mean along the specified axis
    /// 
    /// # Arguments
    /// * `axis` - Axis along which to calculate mean (0 for columns, 1 for rows)
    pub fn mean_axis(&self, axis: usize) -> Self {
        let sum = self.sum_axis(axis);
        let n = if axis == 0 { self.shape[0] } else { self.shape[1] } as f64;
        sum.multiply_scalar(1.0 / n)
    }

    /// Calculates the variance along the specified axis
    /// 
    /// # Arguments
    /// * `axis` - Axis along which to calculate variance (0 for columns, 1 for rows)
    pub fn var_axis(&self, axis: usize) -> Self {
        let mean = self.mean_axis(axis);
        
        // For axis 0, we need to broadcast the mean to match original shape
        let broadcasted_mean = if axis == 0 {
            let mut result = Vec::with_capacity(self.data.len());
            let cols = self.shape[1];
            
            // Repeat mean values for each row
            for _ in 0..self.shape[0] {
                for j in 0..cols {
                    result.push(mean.data[j]);
                }
            }
            
            NDArray::new(result, self.shape.clone())
        } else {
            mean
        };

        let centered = self.subtract(&broadcasted_mean);
        let squared = centered.multiply(&centered);
        let n = if axis == 0 { self.shape[0] } else { self.shape[1] } as f64;
        squared.sum_axis(axis).multiply_scalar(1.0 / n)
    }

    /// Converts a class vector (integers) to binary class matrix (one-hot encoding)
    /// 
    /// # Arguments
    /// 
    /// * `num_classes` - Optional number of classes. If None, it will be inferred from the data
    /// 
    /// # Returns
    /// 
    /// A 2D NDArray where each row is a one-hot encoded vector
    /// 
    /// # Example
    /// 
    /// ```
    /// use nabla_ml::nab_array::NDArray;
    /// 
    /// let labels = NDArray::from_vec(vec![0.0, 1.0, 2.0]);
    /// let categorical = labels.to_categorical(None);
    /// assert_eq!(categorical.shape(), &[3, 3]);
    /// assert_eq!(categorical.data(), &[1.0, 0.0, 0.0,
    ///                                 0.0, 1.0, 0.0,
    ///                                 0.0, 0.0, 1.0]);
    /// ```
    pub fn to_categorical(&self, num_classes: Option<usize>) -> Self {
        // Ensure input is 1D
        assert_eq!(self.ndim(), 1, "Input must be a 1D array");
        
        // Find min and max labels to handle negative values
        let min_label = self.data().iter()
            .fold(f64::INFINITY, |a, &b| a.min(b)) as i32;
        let max_label = self.data().iter()
            .fold(f64::NEG_INFINITY, |a, &b| a.max(b)) as i32;
            
        // Determine number of classes
        let n_classes = num_classes.unwrap_or_else(|| 
            (max_label - min_label + 1) as usize
        );
        
        let n_samples = self.shape()[0];
        let mut categorical = vec![0.0; n_samples * n_classes];
        
        // Fill the categorical array
        for (sample_idx, &label) in self.data().iter().enumerate() {
            // Shift label to be non-negative
            let shifted_label = (label as i32 - min_label) as usize;
            assert!(shifted_label < n_classes, 
                "Label {} is out of range for {} classes", label, n_classes);
            
            let row_offset = sample_idx * n_classes;
            categorical[row_offset + shifted_label] = 1.0;
        }
        
        NDArray::new(categorical, vec![n_samples, n_classes])
    }
}

impl Add for NDArray {
    type Output = Self;

    fn add(self, other: Self) -> Self::Output {
        assert_eq!(self.shape, other.shape, "Shapes must match for element-wise addition");
        let data = self.data.iter().zip(other.data.iter()).map(|(a, b)| a + b).collect();
        NDArray::new(data, self.shape.clone())
    }
}

impl Add<&NDArray> for NDArray {
    type Output = Self;

    fn add(self, other: &NDArray) -> Self::Output {
        println!("Adding arrays:");
        println!("  Left shape: {:?}", self.shape);
        println!("  Right shape: {:?}", other.shape);

        // Handle broadcasting for shapes like [N, M] + [1, M]
        if self.shape.len() == other.shape.len() && 
           other.shape[0] == 1 && 
           self.shape[1] == other.shape[1] {
            
            println!("  Performing broadcasting addition");
            let mut result_data = Vec::with_capacity(self.data.len());
            let cols = other.shape[1];
            
            // Add the broadcasted row to each row of self
            for i in 0..self.shape[0] {
                for j in 0..cols {
                    result_data.push(self.data[i * cols + j] + other.data[j]);
                }
            }
            
            let result = NDArray::new(result_data, self.shape.clone());
            println!("  Result shape: {:?}", result.shape);
            return result;
        }
        
        // Regular element-wise addition for matching shapes
        if self.shape != other.shape {
            panic!("Shapes must match for element-wise addition\n  left: {:?}\n right: {:?}", 
                   self.shape, other.shape);
        }

        let data: Vec<f64> = self.data.iter()
            .zip(other.data.iter())
            .map(|(a, b)| a + b)
            .collect();

        NDArray::new(data, self.shape.clone())
    }
}

impl Sub for NDArray {
    type Output = Self;

    fn sub(self, other: Self) -> Self::Output {
        assert_eq!(self.shape, other.shape, "Shapes must match for element-wise subtraction");
        let data = self.data.iter().zip(other.data.iter()).map(|(a, b)| a - b).collect();
        NDArray::new(data, self.shape.clone())
    }
}

impl Mul<f64> for NDArray {
    type Output = Self;

    fn mul(self, scalar: f64) -> Self::Output {
        let data = self.data.iter().map(|a| a * scalar).collect();
        NDArray::new(data, self.shape.clone())
    }
}


impl Add<f64> for NDArray {
    type Output = Self;

    fn add(self, scalar: f64) -> Self::Output {
        self.add_scalar(scalar)
    }
}

impl Mul<&NDArray> for f64 {
    type Output = NDArray;

    fn mul(self, rhs: &NDArray) -> NDArray {
        rhs.multiply_scalar(self)
    }
}

// Add std::fmt::Display implementation for convenient printing
impl std::fmt::Display for NDArray {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{}", self.display())
    }
}

impl Sub<&NDArray> for NDArray {
    type Output = Self;

    fn sub(self, other: &NDArray) -> Self::Output {
        if self.shape != other.shape {
            panic!("Shapes must match for element-wise subtraction");
        }
        let data: Vec<f64> = self.data.iter()
            .zip(other.data.iter())
            .map(|(a, b)| a - b)
            .collect();
        NDArray::new(data, self.shape.clone())
    }
}

/// Implements element-wise subtraction between two NDArray references
///
/// # Arguments
///
/// * `self` - The first NDArray reference
/// * `other` - The second NDArray reference to subtract from the first
///
/// # Returns
///
/// A new NDArray containing the element-wise difference
///
/// # Panics
///
/// Panics if the shapes of the two arrays don't match
impl<'a, 'b> Sub<&'b NDArray> for &'a NDArray {
    type Output = NDArray;

    fn sub(self, other: &'b NDArray) -> NDArray {
        if self.shape != other.shape {
            panic!("Shapes must match for element-wise subtraction");
        }
        let data: Vec<f64> = self.data.iter()
            .zip(other.data.iter())
            .map(|(a, b)| a - b)
            .collect();
        NDArray::new(data, self.shape.clone())
    }
}

/// Implements element-wise addition between two NDArray references
///
/// # Arguments
///
/// * `self` - The first NDArray reference
/// * `other` - The second NDArray reference to add to the first
///
/// # Returns
///
/// A new NDArray containing the element-wise sum
///
/// # Panics
///
/// Panics if the shapes of the two arrays don't match
impl<'a, 'b> Add<&'b NDArray> for &'a NDArray {
    type Output = NDArray;

    fn add(self, other: &'b NDArray) -> NDArray {
        if self.shape != other.shape {
            panic!("Shapes must match for element-wise addition");
        }
        let data: Vec<f64> = self.data.iter()
            .zip(other.data.iter())
            .map(|(a, b)| a + b)
            .collect();
        NDArray::new(data, self.shape.clone())
    }
}

/// Implements element-wise multiplication between two NDArray references
///
/// # Arguments
///
/// * `self` - The first NDArray reference
/// * `other` - The second NDArray reference to multiply with the first
///
/// # Returns
///
/// A new NDArray containing the element-wise product
///
/// # Panics
///
/// Panics if the shapes of the two arrays don't match
impl<'a, 'b> Mul<&'b NDArray> for &'a NDArray {
    type Output = NDArray;

    fn mul(self, other: &'b NDArray) -> NDArray {
        if self.shape != other.shape {
            panic!("Shapes must match for element-wise multiplication");
        }
        let data: Vec<f64> = self.data.iter()
            .zip(other.data.iter())
            .map(|(a, b)| a * b)
            .collect();
        NDArray::new(data, self.shape.clone())
    }
}

/// Implements element-wise division between two NDArray references
///
/// # Arguments
///
/// * `self` - The first NDArray reference (numerator)
/// * `other` - The second NDArray reference (denominator)
///
/// # Returns
///
/// A new NDArray containing the element-wise quotient
///
/// # Panics
///
/// Panics if the shapes of the two arrays don't match
impl<'a, 'b> Div<&'b NDArray> for &'a NDArray {
    type Output = NDArray;

    fn div(self, other: &'b NDArray) -> NDArray {
        if self.shape != other.shape {
            panic!("Shapes must match for element-wise division");
        }
        let data: Vec<f64> = self.data.iter()
            .zip(other.data.iter())
            .map(|(a, b)| a / b)
            .collect();
        NDArray::new(data, self.shape.clone())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
   

    /// Tests basic NDArray creation with explicit data and shape
    #[test]
    fn test_new_ndarray() {
        let data = vec![1.0, 2.0, 3.0, 4.0];
        let shape = vec![2, 2];
        let array = NDArray::new(data.clone(), shape.clone());
        assert_eq!(array.data(), &data);
        assert_eq!(array.shape(), &shape);
    }

    /// Tests creation of 1D array from vector
    #[test]
    fn test_from_vec() {
        let data = vec![1.0, 2.0, 3.0];
        let array = NDArray::from_vec(data.clone());
        assert_eq!(array.data(), &data);
        assert_eq!(array.shape(), &[3]);
    }

    /// Tests array creation with evenly spaced values
    #[test]
    fn test_arange() {
        let array = NDArray::arange(0.0, 5.0, 1.0);
        assert_eq!(array.data(), &[0.0, 1.0, 2.0, 3.0, 4.0]);
    }

    /// Tests element-wise addition between two arrays
    #[test]
    fn test_element_wise_addition() {
        let arr1 = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let arr2 = NDArray::from_vec(vec![4.0, 5.0, 6.0]);
        let sum = arr1.clone() + arr2;
        assert_eq!(sum.data(), &[5.0, 7.0, 9.0]);
    }

    /// Tests multiplication of array by scalar value
    #[test]
    fn test_scalar_multiplication() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let scaled = arr.clone() * 2.0;
        assert_eq!(scaled.data(), &[2.0, 4.0, 6.0]);
    }

    /// Tests reshaping array to new dimensions while preserving data
    #[test]
    fn test_reshape() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
        let reshaped = arr.reshape(&[2, 3])
            .expect("Failed to reshape array to valid dimensions");
        assert_eq!(reshaped.data(), &[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
    }

    /// Tests element-wise subtraction between arrays
    #[test]
    fn test_element_wise_subtraction() {
        let arr1 = NDArray::from_vec(vec![5.0, 7.0, 9.0]);
        let arr2 = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let diff = arr1 - arr2;
        assert_eq!(diff.data(), &[4.0, 5.0, 6.0]);
    }

    /// Tests addition of scalar to array
    #[test]
    fn test_scalar_addition() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = arr + 1.0;
        assert_eq!(result.data(), &[2.0, 3.0, 4.0]);
    }

    /// Tests combination of multiple operations in sequence
    #[test]
    #[allow(non_snake_case)]
    fn test_combined_operations() {
        let X = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let theta_1 = 2.0;
        let theta_0 = 1.0;
        let predictions = X.clone() * theta_1 + theta_0;
        assert_eq!(predictions.data(), &[3.0, 5.0, 7.0]);
    }

    /// Tests one-hot encoding of label vectors
    #[test]
    fn test_one_hot_encode() {
        let labels = NDArray::from_vec(vec![0.0, 1.0, 2.0, 1.0, 0.0]);
        let one_hot = NDArray::one_hot_encode(&labels);
        
        let expected = vec![
            1.0, 0.0, 0.0,
            0.0, 1.0, 0.0,
            0.0, 0.0, 1.0,
            0.0, 1.0, 0.0,
            1.0, 0.0, 0.0
        ];
        
        assert_eq!(one_hot.shape(), &[5, 3]);
        assert_eq!(one_hot.data(), &expected);
    }

    /// Tests one-hot encoding with negative label values
    #[test]
    fn test_one_hot_encode_negative() {
        let labels = NDArray::from_vec(vec![-1.0, 0.0, 1.0, 0.0, -1.0]);
        let one_hot = NDArray::one_hot_encode(&labels);
        
        let expected = vec![
            1.0, 0.0, 0.0,
            0.0, 1.0, 0.0,
            0.0, 0.0, 1.0,
            0.0, 1.0, 0.0,
            1.0, 0.0, 0.0
        ];
        
        assert_eq!(one_hot.shape(), &[5, 3]);
        assert_eq!(one_hot.data(), &expected);
    }

    /// Tests that one-hot encoding fails with non-integer values
    #[test]
    #[should_panic(expected = "All values must be integers for one-hot encoding")]
    fn test_one_hot_encode_non_integer() {
        let labels = NDArray::from_vec(vec![0.0, 1.5, 2.0]);
        NDArray::one_hot_encode(&labels);
    }

    /// Tests matrix transposition operation
    #[test]
    fn test_transpose() {
        let arr = NDArray::from_matrix(vec![
            vec![1.0, 2.0, 3.0],
            vec![4.0, 5.0, 6.0]
        ]);
        let transposed = arr.transpose()
            .expect("Failed to transpose valid 2D array");
        assert_eq!(transposed.shape(), &[3, 2]);
        assert_eq!(transposed.data(), &[1.0, 4.0, 2.0, 5.0, 3.0, 6.0]);
    }

    /// Tests matrix multiplication (dot product)
    #[test]
    fn test_dot() {
        let arr1 = NDArray::from_matrix(vec![
            vec![1.0, 2.0, 3.0],
            vec![4.0, 5.0, 6.0],
        ]);
        let arr2 = NDArray::from_matrix(vec![
            vec![7.0, 8.0],
            vec![9.0, 10.0],
            vec![11.0, 12.0],
        ]);
        let dot = arr1.dot(&arr2);
        assert_eq!(dot.data(), &[58.0, 64.0, 139.0, 154.0]); // Adjust expected values based on the dot product calculation
    }

    /// Tests element-wise multiplication between arrays
    #[test]
    fn test_multiply() {
        let arr1 = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let arr2 = NDArray::from_vec(vec![4.0, 5.0, 6.0]);
        let multiply = arr1.multiply(&arr2);
        assert_eq!(multiply.data(), &[4.0, 10.0, 18.0]);
    }

    /// Tests subtraction of scalar from array
    #[test]
    fn test_scalar_sub() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = arr.scalar_sub(1.0);
        assert_eq!(result.data(), &[0.0, 1.0, 2.0]);
    }

    /// Tests multiplication by scalar value
    #[test]
    fn test_multiply_scalar() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = arr.multiply_scalar(2.0);
        assert_eq!(result.data(), &[2.0, 4.0, 6.0]);
    }

    /// Tests mapping function across array elements
    #[test]
    fn test_map() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = arr.map(|x| x * 2.0);
        assert_eq!(result.data(), &[2.0, 4.0, 6.0]);
    }

    /// Tests clipping array values to specified range
    #[test]
    fn test_clip() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = arr.clip(1.0, 2.0);
        assert_eq!(result.data(), &[1.0, 2.0, 2.0]);
    }

    /// Tests element-wise division between arrays
    #[test]
    fn test_divide() {
        let arr1 = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let arr2 = NDArray::from_vec(vec![4.0, 5.0, 6.0]);
        let divide = arr1.divide(&arr2);
        assert_eq!(divide.data(), &[0.25, 0.4, 0.5]);
    }

    /// Tests division by scalar value
    #[test]
    fn test_divide_scalar() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = arr.divide_scalar(2.0);
        assert_eq!(result.data(), &[0.5, 1.0, 1.5]);
    }

    /// Tests sum operation along specified axis
    #[test]
    fn test_sum_axis() {
        let arr = NDArray::from_matrix(vec![
            vec![1.0, 2.0, 3.0],
            vec![4.0, 5.0, 6.0],
        ]);
        let result = arr.sum_axis(0);
        assert_eq!(result.data(), &[5.0, 7.0, 9.0]); // Sum along columns
        assert_eq!(result.shape(), &[1, 3]); // Shape should be [1, 3]

        let result = arr.sum_axis(1);
        assert_eq!(result.data(), &[6.0, 15.0]); // Sum along rows
        assert_eq!(result.shape(), &[2, 1]); // Shape should be [2, 1]
    }

    /// Tests element-wise subtraction between arrays
    #[test]
    fn test_subtract() {
        let arr1 = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let arr2 = NDArray::from_vec(vec![4.0, 5.0, 6.0]);
        let subtract = arr1.subtract(&arr2);
        assert_eq!(subtract.data(), &[-3.0, -3.0, -3.0]);
    }

    /// Tests addition of scalar to array
    #[test]
    fn test_add_scalar() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = arr.add_scalar(1.0);
        assert_eq!(result.data(), &[2.0, 3.0, 4.0]);
    }

    /// Tests creation of zero-filled array
    #[test]
    fn test_zeros() {
        let shape = vec![2, 3];
        let zeros = NDArray::zeros(shape);
        assert_eq!(zeros.shape(), &[2, 3]);
        assert_eq!(zeros.data(), &[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]);
    }

    /// Tests natural logarithm of array elements
    #[test]
    fn test_log() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = arr.log();
        assert_eq!(result.data(), &[0.0, 0.6931471805599453, 1.0986122886681098]);
    }

    /// Tests sum of all array elements
    #[test]
    fn test_sum() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = arr.sum();
        assert_eq!(result, 6.0);
    }

    /// Tests calculation of array mean
    #[test]
    fn test_mean() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
        assert_eq!(arr.mean(), 2.5);
    }

    /// Tests calculation of array standard deviation
    #[test]
    fn test_std() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
        assert!((arr.std() - 1.118034).abs() < 1e-6);
    }

    /// Tests finding minimum values along specified axis
    #[test]
    fn test_min_axis() {
        let arr = NDArray::from_matrix(vec![
            vec![1.0, 2.0, 3.0],
            vec![4.0, 0.5, 6.0],
        ]);
        
        let min_axis_0 = arr.min_axis(0).unwrap();
        assert_eq!(min_axis_0.data(), &[1.0, 0.5, 3.0]);
        
        let min_axis_1 = arr.min_axis(1).unwrap();
        assert_eq!(min_axis_1.data(), &[1.0, 0.5]);
    }

    /// Tests array concatenation along specified axis
    #[test]
    fn test_concatenate() {
        let arr1 = NDArray::from_matrix(vec![
            vec![1.0, 2.0],
            vec![3.0, 4.0],
        ]);
        let arr2 = NDArray::from_matrix(vec![
            vec![5.0, 6.0],
            vec![7.0, 8.0],
        ]);
        
        let concat_0 = arr1.concatenate(&arr2, 0).unwrap();
        assert_eq!(concat_0.shape(), &[4, 2]);
        assert_eq!(concat_0.data(), &[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]);
        
        let concat_1 = arr1.concatenate(&arr2, 1).unwrap();
        assert_eq!(concat_1.shape(), &[2, 4]);
        assert_eq!(concat_1.data(), &[1.0, 2.0, 5.0, 6.0, 3.0, 4.0, 7.0, 8.0]);
    }

    /// Tests broadcasting addition between arrays of different shapes
    #[test]
    fn test_broadcast_addition() {
        let arr1 = NDArray::from_matrix(vec![
            vec![1.0, 2.0, 3.0],
            vec![4.0, 5.0, 6.0]
        ]);
        let arr2 = NDArray::from_matrix(vec![
            vec![1.0, 2.0, 3.0]
        ]);
        let result = arr1 + &arr2;
        assert_eq!(result.shape(), &[2, 3]);
        assert_eq!(result.data(), &[2.0, 4.0, 6.0, 5.0, 7.0, 9.0]);
    }

    /// Tests finding maximum value in array
    #[test]
    fn test_max() {
        let arr = NDArray::from_vec(vec![1.0, 5.0, 3.0, 2.0]);
        assert_eq!(arr.max(), 5.0);
    }

    /// Tests sum operation with broadcasting
    #[test]
    fn test_sum_with_broadcasting() {
        let arr = NDArray::from_matrix(vec![
            vec![1.0, 2.0, 3.0],
            vec![4.0, 5.0, 6.0]
        ]);
        let sum_cols = arr.sum_axis(0);
        assert_eq!(sum_cols.shape(), &[1, 3]);
        assert_eq!(sum_cols.data(), &[5.0, 7.0, 9.0]);

        // Test broadcasting the sum back
        let result = arr + &sum_cols;
        assert_eq!(result.data(), &[6.0, 9.0, 12.0, 9.0, 12.0, 15.0]);
    }

    /// Tests various scalar operations (multiplication and addition)
    #[test]
    fn test_scalar_operations() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        
        // Test scalar multiplication from both sides
        let result1 = arr.clone() * 2.0;
        let result2 = 2.0 * &arr;
        assert_eq!(result1.data(), result2.data());
        
        // Test scalar addition
        let result3 = arr + 1.0;
        assert_eq!(result3.data(), &[2.0, 3.0, 4.0]);
    }

    /// Tests error handling for invalid array addition
    #[test]
    #[should_panic(expected = "Shapes must match for element-wise addition")]
    fn test_invalid_addition() {
        let arr1 = NDArray::from_matrix(vec![vec![1.0, 2.0]]);
        let arr2 = NDArray::from_matrix(vec![vec![1.0, 2.0, 3.0]]);
        let _result = arr1 + arr2;
    }

    /// Tests chaining multiple operations together
    #[test]
    fn test_chained_operations() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = (arr * 2.0 + 1.0).multiply_scalar(3.0);
        assert_eq!(result.data(), &[9.0, 15.0, 21.0]);
    }

    /// Tests absolute value calculation
    #[test]
    fn test_abs() {
        let arr = NDArray::from_vec(vec![-1.0, 2.0, -3.0]);
        let result = arr.abs();
        assert_eq!(result.data(), &[1.0, 2.0, 3.0]);
    }

    /// Tests exponential power calculation
    #[test]
    fn test_power() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = arr.power(2.0);
        assert_eq!(result.data(), &[1.0, 4.0, 9.0]);
    }

    /// Tests cumulative sum calculation
    #[test]
    fn test_cumsum() {
        let arr = NDArray::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
        let result = arr.cumsum();
        assert_eq!(result.data(), &[1.0, 3.0, 6.0, 10.0]);
    }

    /// Tests rounding to specified decimals
    #[test]
    fn test_round() {
        let arr = NDArray::from_vec(vec![1.234, 2.345, 3.456]);
        let result = arr.round(2);
        assert_eq!(result.data(), &[1.23, 2.35, 3.46]);
    }

    /// Tests getting indices that would sort the array
    #[test]
    fn test_argsort() {
        let arr = NDArray::from_vec(vec![3.0, 1.0, 2.0]);
        let indices = arr.argsort();
        assert_eq!(indices, vec![1, 2, 0]);
    }

    /// Tests finding argmax along different axes
    #[test]
    fn test_argmax() {
        let arr = NDArray::from_matrix(vec![
            vec![1.0, 3.0, 2.0],
            vec![4.0, 2.0, 6.0]
        ]);
        
        // Test global argmax
        assert_eq!(arr.argmax(None), vec![5]); // 6.0 is at index 5
        
        // Test argmax along axis 0
        assert_eq!(arr.argmax(Some(0)), vec![1, 0, 1]); // Max along columns
        
        // Test argmax along axis 1
        assert_eq!(arr.argmax(Some(1)), vec![1, 2]); // Max along rows
    }

    /// Tests finding unique values in array
    #[test]
    fn test_unique() {
        let arr = NDArray::from_vec(vec![3.0, 1.0, 2.0, 1.0, 3.0]);
        let unique = arr.unique();
        assert_eq!(unique.data(), &[1.0, 2.0, 3.0]);
    }

    /// Tests conditional value selection
    #[test]
    fn test_where_cond() {
        let arr = NDArray::from_vec(vec![-1.0, 2.0, -3.0, 4.0]);
        let result = arr.where_cond(|x| x > 0.0, 1.0, -1.0);
        assert_eq!(result.data(), &[-1.0, 1.0, -1.0, 1.0]);
    }

    /// Tests median calculation
    #[test]
    fn test_median() {
        // Test odd number of elements
        let arr1 = NDArray::from_vec(vec![1.0, 3.0, 2.0]);
        assert_eq!(arr1.median(), 2.0);
        
        // Test even number of elements
        let arr2 = NDArray::from_vec(vec![1.0, 3.0, 2.0, 4.0]);
        assert_eq!(arr2.median(), 2.5);
    }

    /// Tests finding maximum values along specified axis
    #[test]
    fn test_max_axis() {
        let arr = NDArray::from_matrix(vec![
            vec![1.0, 2.0, 3.0],
            vec![4.0, 0.5, 6.0],
        ]);
        
        let max_axis_0 = arr.max_axis(0);
        assert_eq!(max_axis_0.shape(), &[1, 3]);
        assert_eq!(max_axis_0.data(), &[4.0, 2.0, 6.0]); // Max along columns
        
        let max_axis_1 = arr.max_axis(1);
        assert_eq!(max_axis_1.shape(), &[2, 1]);
        assert_eq!(max_axis_1.data(), &[3.0, 6.0]); // Max along rows
    }

    /// Tests element-wise subtraction between NDArray references
    #[test]
    fn test_element_wise_subtraction_ref() {
        let arr1 = NDArray::from_vec(vec![5.0, 7.0, 9.0]);
        let arr2 = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let diff = &arr1 - &arr2;
        assert_eq!(diff.data(), &[4.0, 5.0, 6.0]);
    }

    /// Tests element-wise addition between NDArray references
    #[test]
    fn test_element_wise_addition_ref() {
        let arr1 = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let arr2 = NDArray::from_vec(vec![4.0, 5.0, 6.0]);
        let sum = &arr1 + &arr2;
        assert_eq!(sum.data(), &[5.0, 7.0, 9.0]);
    }

    /// Tests element-wise multiplication between NDArray references
    #[test]
    fn test_element_wise_multiplication_ref() {
        let arr1 = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let arr2 = NDArray::from_vec(vec![4.0, 5.0, 6.0]);
        let product = &arr1 * &arr2;
        assert_eq!(product.data(), &[4.0, 10.0, 18.0]);
    }

    /// Tests element-wise division between NDArray references
    #[test]
    fn test_element_wise_division_ref() {
        let arr1 = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let arr2 = NDArray::from_vec(vec![4.0, 5.0, 6.0]);
        let quotient = &arr1 / &arr2;
        assert_eq!(quotient.data(), &[0.25, 0.4, 0.5]);
    }

    /// Tests random uniform distribution generation
    #[test]
    fn test_rand_uniform() {
        // Test shape
        let shape = [2, 3];
        let arr = NDArray::rand_uniform(&shape);
        assert_eq!(arr.shape(), &[2, 3]);

        // Test range (should be between 0 and 1)
        for &val in arr.data() {
            assert!(val >= 0.0 && val <= 1.0);
        }

        // Test randomness (generate multiple arrays and verify they're different)
        let arr2 = NDArray::rand_uniform(&shape);
        assert_ne!(arr.data(), arr2.data(), "Random arrays should be different");

        // Test distribution (roughly uniform)
        let large_arr = NDArray::rand_uniform(&[1000]);
        let mean = large_arr.mean();
        let std = large_arr.std();
        
        // For uniform distribution between 0 and 1:
        // Expected mean = 0.5
        // Expected std = 1/sqrt(12) ≈ 0.289
        assert!((mean - 0.5).abs() < 0.1, "Mean should be approximately 0.5");
        assert!((std - 0.289).abs() < 0.1, "Std should be approximately 0.289");
    }

    #[test]
    fn test_statistical_functions() {
        let arr = NDArray::from_matrix(vec![
            vec![1.0, 2.0, 3.0],
            vec![4.0, 5.0, 6.0],
        ]);

        // Test mean_axis
        let mean_cols = arr.mean_axis(0);
        assert_eq!(mean_cols.shape(), &[1, 3]);
        assert_eq!(mean_cols.data(), &[2.5, 3.5, 4.5]);

        // Test var_axis
        let var_cols = arr.var_axis(0);
        assert_eq!(var_cols.shape(), &[1, 3]);
        assert_eq!(var_cols.data(), &[2.25, 2.25, 2.25]);

        // Test sqrt (using NabMath trait)
        let sqrt = arr.sqrt();  // This now uses the implementation from nab_math.rs
        assert_eq!(sqrt.data(), &[1.0, 2.0_f64.sqrt(), 3.0_f64.sqrt(), 
                                 2.0, 5.0_f64.sqrt(), 6.0_f64.sqrt()]);

        // Test add_scalar (using NabMath trait)
        let added = arr.add_scalar(1.0);  // This now uses the implementation from nab_math.rs
        assert_eq!(added.data(), &[2.0, 3.0, 4.0, 5.0, 6.0, 7.0]);
    }

    #[test]
    fn test_to_categorical() {
        // Test basic functionality
        let labels = NDArray::from_vec(vec![0.0, 1.0, 2.0]);
        let categorical = labels.to_categorical(None);
        assert_eq!(categorical.shape(), &[3, 3]);
        assert_eq!(categorical.data(), &[
            1.0, 0.0, 0.0,
            0.0, 1.0, 0.0,
            0.0, 0.0, 1.0
        ]);

        // Test with explicit num_classes
        let labels = NDArray::from_vec(vec![0.0, 1.0]);
        let categorical = labels.to_categorical(Some(3));
        assert_eq!(categorical.shape(), &[2, 3]);
        assert_eq!(categorical.data(), &[
            1.0, 0.0, 0.0,
            0.0, 1.0, 0.0
        ]);

        // Test with negative labels
        let labels = NDArray::from_vec(vec![-1.0, 0.0, 1.0]);
        let categorical = labels.to_categorical(Some(3));
        assert_eq!(categorical.shape(), &[3, 3]);
        assert_eq!(categorical.data(), &[
            1.0, 0.0, 0.0,
            0.0, 1.0, 0.0,
            0.0, 0.0, 1.0
        ]);
    }
}