nabla_ml/
nab_math.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
//! Mathematical functions for NDArray operations
//! 
//! This module provides mathematical operations commonly found in NumPy,
//! implemented for the NDArray struct.

use crate::nab_array::NDArray;

/// Mathematical functions for NDArray
pub struct NabMath;

impl NDArray {
    /// Calculates the square root of each element in the array
    ///
    /// # Returns
    ///
    /// A new NDArray with the square root of each element.
    #[allow(dead_code)]
    pub fn sqrt(&self) -> Self {
        let data = self.data().iter().map(|x| x.sqrt()).collect();
        NDArray::new(data, self.shape().to_vec())
    }

    /// Calculates the exponential (e^x) of each element in the array
    ///
    /// # Returns
    ///
    /// A new NDArray with the exponential of each element.
    #[allow(dead_code)]
    pub fn exp(&self) -> Self {
        let data = self.data().iter().map(|x| x.exp()).collect();
        NDArray::new(data, self.shape().to_vec())
    }

    /// Calculates the sine of each element in the array
    ///
    /// # Returns
    ///
    /// A new NDArray with the sine of each element.
    #[allow(dead_code)]
    pub fn sin(&self) -> Self {
        let data: Vec<f64> = self.data().iter().map(|&x| x.sin()).collect();
        Self::new(data, self.shape().to_vec())
    }

    /// Calculates the cosine of each element in the array
    ///
    /// # Returns
    ///
    /// A new NDArray with the cosine of each element.
    #[allow(dead_code)]
    pub fn cos(&self) -> Self {
        let data: Vec<f64> = self.data().iter().map(|&x| x.cos()).collect();
        Self::new(data, self.shape().to_vec())
    }

    /// Calculates the natural logarithm of each element in the array
    ///
    /// # Returns
    ///
    /// A new NDArray with the natural logarithm of each element.
    #[allow(dead_code)]
    pub fn ln(&self) -> Self {
        let data: Vec<f64> = self.data().iter().map(|&x| x.ln()).collect();
        Self::new(data, self.shape().to_vec())
    }

}

impl NabMath {
    /// Computes the sigmoid function element-wise
    /// 
    /// sigmoid(x) = 1 / (1 + exp(-x))
    ///
    /// # Arguments
    ///
    /// * `x` - Input NDArray
    ///
    /// # Returns
    ///
    /// NDArray with sigmoid applied element-wise
    pub fn sigmoid(x: &NDArray) -> NDArray {
        x.map(|val| 1.0 / (1.0 + (-val).exp()))
    }

    /// Computes the derivative of sigmoid function element-wise
    ///
    /// sigmoid'(x) = sigmoid(x) * (1 - sigmoid(x))
    ///
    /// # Arguments
    ///
    /// * `x` - Input NDArray
    ///
    /// # Returns
    ///
    /// NDArray with sigmoid derivative applied element-wise
    pub fn sigmoid_derivative(x: &NDArray) -> NDArray {
        let sigmoid_x = Self::sigmoid(x);
        sigmoid_x.map(|val| val * (1.0 - val))
    }

    /// Computes the hyperbolic tangent function element-wise
    ///
    /// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
    ///
    /// # Arguments
    ///
    /// * `x` - Input NDArray
    ///
    /// # Returns
    ///
    /// NDArray with tanh applied element-wise
    pub fn tanh(x: &NDArray) -> NDArray {
        x.map(|val| val.tanh())
    }

    /// Computes the derivative of tanh function element-wise
    ///
    /// tanh'(x) = 1 - tanh²(x)
    ///
    /// # Arguments
    ///
    /// * `x` - Input NDArray
    ///
    /// # Returns
    ///
    /// NDArray with tanh derivative applied element-wise
    pub fn tanh_derivative(x: &NDArray) -> NDArray {
        let tanh_x = Self::tanh(x);
        tanh_x.map(|val| 1.0 - val * val)
    }

    /// Computes the ReLU function element-wise
    ///
    /// ReLU(x) = max(0, x)
    ///
    /// # Arguments
    ///
    /// * `x` - Input NDArray
    ///
    /// # Returns
    ///
    /// NDArray with ReLU applied element-wise
    pub fn relu(x: &NDArray) -> NDArray {
        x.map(|val| val.max(0.0))
    }

    /// Computes the derivative of ReLU function element-wise
    ///
    /// ReLU'(x) = 1 if x > 0, 0 otherwise
    ///
    /// # Arguments
    ///
    /// * `x` - Input NDArray
    ///
    /// # Returns
    ///
    /// NDArray with ReLU derivative applied element-wise
    pub fn relu_derivative(x: &NDArray) -> NDArray {
        x.map(|val| if val > 0.0 { 1.0 } else { 0.0 })
    }

    /// Computes the softmax function along the specified axis
    ///
    /// softmax(x) = exp(x) / sum(exp(x))
    ///
    /// # Arguments
    ///
    /// * `x` - Input NDArray
    /// * `axis` - Axis along which to compute softmax (default: -1 for last axis)
    ///
    /// # Returns
    ///
    /// NDArray with softmax applied along specified axis
    pub fn softmax(x: &NDArray, _axis: Option<usize>) -> NDArray {
        assert!(x.ndim() == 1 || x.ndim() == 2, "Softmax is only defined for 1D or 2D arrays");

        let exp = x.map(|val| val.exp());
        
        if x.ndim() == 1 {
            // For 1D arrays
            let sum = exp.sum();
            exp.map(|val| val / sum)
        } else {
            // For 2D arrays, always compute along rows (axis=1)
            let (rows, cols) = (x.shape()[0], x.shape()[1]);
            let sum = exp.sum_axis(1);  // Shape: [rows, 1]
            
            // Create broadcasted sum array
            let mut result_data = Vec::with_capacity(rows * cols);
            for i in 0..rows {
                for j in 0..cols {
                    // Use sum[i] for each row instead of sum[0]
                    result_data.push(exp.data()[i * cols + j] / sum.data()[i]);
                }
            }
            
            NDArray::new(result_data, x.shape().to_vec())
        }
    }

    /// Computes the derivative of softmax function
    ///
    /// # Arguments
    ///
    /// * `x` - Input NDArray (softmax output)
    ///
    /// # Returns
    ///
    /// NDArray with softmax derivative
    pub fn softmax_derivative(x: &NDArray) -> NDArray {
        x.map(|val| val * (1.0 - val))
    }

    /// Computes the Leaky ReLU function element-wise
    ///
    /// LeakyReLU(x) = max(alpha * x, x)
    ///
    /// # Arguments
    ///
    /// * `x` - Input NDArray
    /// * `alpha` - Slope for negative values (default: 0.01)
    ///
    /// # Returns
    ///
    /// NDArray with Leaky ReLU applied element-wise
    pub fn leaky_relu(x: &NDArray, alpha: Option<f64>) -> NDArray {
        let alpha = alpha.unwrap_or(0.01);
        x.map(|val| if val > 0.0 { val } else { alpha * val })
    }

    /// Computes the derivative of Leaky ReLU function
    ///
    /// # Arguments
    ///
    /// * `x` - Input NDArray
    /// * `alpha` - Slope for negative values (default: 0.01)
    ///
    /// # Returns
    ///
    /// NDArray with Leaky ReLU derivative
    pub fn leaky_relu_derivative(x: &NDArray, alpha: Option<f64>) -> NDArray {
        let alpha = alpha.unwrap_or(0.01);
        x.map(|val| if val > 0.0 { 1.0 } else { alpha })
    }

    /// Computes the ELU (Exponential Linear Unit) function
    ///
    /// ELU(x) = x if x > 0, alpha * (exp(x) - 1) if x <= 0
    ///
    /// # Arguments
    ///
    /// * `x` - Input NDArray
    /// * `alpha` - Scale for negative values (default: 1.0)
    ///
    /// # Returns
    ///
    /// NDArray with ELU applied element-wise
    pub fn elu(x: &NDArray, alpha: Option<f64>) -> NDArray {
        let alpha = alpha.unwrap_or(1.0);
        x.map(|val| if val > 0.0 { val } else { alpha * (val.exp() - 1.0) })
    }

    /// Computes the derivative of ELU function
    ///
    /// # Arguments
    ///
    /// * `x` - Input NDArray
    /// * `alpha` - Scale for negative values (default: 1.0)
    ///
    /// # Returns
    ///
    /// NDArray with ELU derivative
    pub fn elu_derivative(x: &NDArray, alpha: Option<f64>) -> NDArray {
        let alpha = alpha.unwrap_or(1.0);
        x.map(|val| if val > 0.0 { 1.0 } else { alpha * val.exp() })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_sqrt() {
        let arr = NDArray::from_vec(vec![1.0, 4.0, 9.0]);
        let sqrt_arr = arr.sqrt();
        assert_eq!(sqrt_arr.data(), &[1.0, 2.0, 3.0]);
    }

    #[test]
    fn test_exp() {
        let arr = NDArray::from_vec(vec![0.0, 1.0, 2.0]);
        let exp_arr = arr.exp();
        assert!((exp_arr.data()[0] - 1.0).abs() < 1e-4);
        assert!((exp_arr.data()[1] - std::f64::consts::E).abs() < 1e-4);
        assert!((exp_arr.data()[2] - std::f64::consts::E.powi(2)).abs() < 1e-4);
    }

    /// Tests sigmoid function computation
    #[test]
    fn test_sigmoid() {
        let x = NDArray::from_vec(vec![-2.0, 0.0, 2.0]);
        let result = NabMath::sigmoid(&x);
        
        // Test output range (0 to 1)
        for &val in result.data() {
            assert!(val > 0.0 && val < 1.0);
        }
        
        // Test sigmoid(0) = 0.5
        assert!((result.data()[1] - 0.5).abs() < 1e-6);
        
        // Test symmetry: sigmoid(-x) = 1 - sigmoid(x)
        assert!((result.data()[0] - (1.0 - result.data()[2])).abs() < 1e-6);
    }

    /// Tests sigmoid derivative computation
    #[test]
    fn test_sigmoid_derivative() {
        let x = NDArray::from_vec(vec![-1.0, 0.0, 1.0]);
        let result = NabMath::sigmoid_derivative(&x);
        assert!((result.data()[0] - 0.1966).abs() < 1e-4);
        assert!((result.data()[1] - 0.2500).abs() < 1e-4);
        assert!((result.data()[2] - 0.1966).abs() < 1e-4);
    }

    /// Tests tanh function computation
    #[test]
    fn test_tanh() {
        let x = NDArray::from_vec(vec![-2.0, 0.0, 2.0]);
        let result = NabMath::tanh(&x);
        
        // Test output range (-1 to 1)
        for &val in result.data() {
            assert!(val >= -1.0 && val <= 1.0);
        }
        
        // Test tanh(0) = 0
        assert!(result.data()[1].abs() < 1e-6);
        
        // Test symmetry: tanh(-x) = -tanh(x)
        assert!((result.data()[0] + result.data()[2]).abs() < 1e-6);
    }

    /// Tests tanh derivative computation
    #[test]
    fn test_tanh_derivative() {
        let x = NDArray::from_vec(vec![-1.0, 0.0, 1.0]);
        let result = NabMath::tanh_derivative(&x);
        assert!((result.data()[0] - 0.4199).abs() < 1e-4);
        assert!((result.data()[1] - 1.0000).abs() < 1e-4);
        assert!((result.data()[2] - 0.4199).abs() < 1e-4);
    }

    /// Tests ReLU function computation
    #[test]
    fn test_relu() {
        let x = NDArray::from_vec(vec![-2.0, -1.0, 0.0, 1.0, 2.0]);
        let result = NabMath::relu(&x);
        
        // Test positive values remain unchanged
        assert_eq!(result.data()[3], 1.0);
        assert_eq!(result.data()[4], 2.0);
        
        // Test negative values become zero
        assert_eq!(result.data()[0], 0.0);
        assert_eq!(result.data()[1], 0.0);
        
        // Test zero remains zero
        assert_eq!(result.data()[2], 0.0);
    }

    /// Tests ReLU derivative computation
    #[test]
    fn test_relu_derivative() {
        let x = NDArray::from_vec(vec![-1.0, 0.0, 1.0]);
        let result = NabMath::relu_derivative(&x);
        assert_eq!(result.data(), &[0.0, 0.0, 1.0]);
    }

    /// Tests softmax computation on different dimensions
    #[test]
    fn test_softmax() {
        // Test 1D array
        let x = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
        let result = NabMath::softmax(&x, None);
        
        // Test sum equals 1
        let sum: f64 = result.data().iter().sum();
        assert!((sum - 1.0).abs() < 1e-6);
        
        // Test monotonicity (larger inputs -> larger probabilities)
        for i in 1..result.data().len() {
            assert!(result.data()[i] > result.data()[i-1]);
        }

        // Test 2D array
        let x = NDArray::from_matrix(vec![
            vec![1.0, 2.0, 3.0],
            vec![4.0, 5.0, 6.0]
        ]);
        let result = NabMath::softmax(&x, Some(1));
        
        // Test each row sums to 1
        for i in 0..2 {
            let row_sum: f64 = result.data()[i*3..(i+1)*3].iter().sum();
            assert!((row_sum - 1.0).abs() < 1e-6);
        }
    }

    /// Tests softmax derivative computation
    #[test]
    fn test_softmax_derivative() {
        let x = NDArray::from_vec(vec![0.1, 0.7, 0.2]);
        let result = NabMath::softmax_derivative(&x);
        assert_eq!(result.shape(), &[3]);
        // Verify derivative values
        for &val in result.data() {
            assert!(val >= 0.0 && val <= 0.25); // Maximum value is 0.25 for softmax derivative
        }
    }

    /// Tests Leaky ReLU computation with different alphas
    #[test]
    fn test_leaky_relu() {
        let x = NDArray::from_vec(vec![-2.0, -1.0, 0.0, 1.0, 2.0]);
        
        // Test with default alpha
        let result = NabMath::leaky_relu(&x, None);
        assert_eq!(result.data()[3], 1.0);  // Positive values unchanged
        assert_eq!(result.data()[4], 2.0);
        assert_eq!(result.data()[0], -0.02); // Negative values scaled by 0.01
        assert_eq!(result.data()[2], 0.0);   // Zero unchanged
        
        // Test with custom alpha
        let result = NabMath::leaky_relu(&x, Some(0.1));
        assert_eq!(result.data()[3], 1.0);   // Positive values unchanged
        assert_eq!(result.data()[0], -0.2);  // Negative values scaled by 0.1
    }

    /// Tests ELU computation with different alphas
    #[test]
    fn test_elu() {
        let x = NDArray::from_vec(vec![-2.0, -1.0, 0.0, 1.0, 2.0]);
        
        // Test with default alpha
        let result = NabMath::elu(&x, None);
        assert!(result.data()[0] < -0.8); // ELU(-2) ≈ -0.86
        assert_eq!(result.data()[3], 1.0);

        // Test with custom alpha
        let result = NabMath::elu(&x, Some(2.0));
        assert!(result.data()[0] < -1.7); // ELU(-2) with alpha=2 ≈ -1.73
        assert_eq!(result.data()[3], 1.0);
    }

    /// Tests ELU derivative computation
    #[test]
    fn test_elu_derivative() {
        let x = NDArray::from_vec(vec![-2.0, -1.0, 0.0, 1.0, 2.0]);
        let result = NabMath::elu_derivative(&x, None);
        assert!(result.data()[0] > 0.0 && result.data()[0] < 1.0);
        assert_eq!(result.data()[3], 1.0);
    }
}