nabla_ml/
nab_regression.rsuse crate::nab_array::NDArray;
use crate::nab_loss::NabLoss;
use crate::nabla::Nabla;
impl Nabla {
#[allow(non_snake_case)]
#[allow(dead_code)]
pub fn linear_regression(X: &NDArray, y: &NDArray, alpha: f64, epochs: usize) -> (Vec<f64>, Vec<f64>) {
let N = X.shape()[0];
let mut theta = vec![0.0; X.shape()[1] + 1]; let mut history = Vec::with_capacity(epochs);
for _ in 0..epochs {
let y_pred: Vec<f64> = (0..N).map(|i| {
theta[0] + X.data().iter().skip(i * X.shape()[1]).take(X.shape()[1]).zip(&theta[1..]).map(|(&x, &t)| x * t).sum::<f64>()
}).collect();
let mse = NabLoss::mean_squared_error(y, &NDArray::from_vec(y_pred.clone()));
history.push(mse);
let gradients = Nabla::linear_regression_gradients(X, y, &NDArray::from_vec(y_pred), N);
for j in 0..theta.len() {
theta[j] -= alpha * gradients[j];
}
}
(theta, history)
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand::Rng;
#[test]
#[allow(non_snake_case)]
fn test_linear_regression() {
let mut rng = rand::thread_rng();
let X = NDArray::from_matrix((0..100).map(|_| vec![2.0 * rng.gen::<f64>()]).collect());
let y = NDArray::from_vec(X.data().iter().map(|&x| 4.0 + 3.0 * x + rng.gen::<f64>()).collect());
let (theta, history) = Nabla::linear_regression(&X, &y, 0.01, 2000);
assert!((theta[0] - 4.0).abs() < 1.0);
assert!((theta[1] - 3.0).abs() < 1.0);
assert!(history.first().unwrap() > history.last().unwrap());
}
#[test]
#[allow(non_snake_case)]
fn test_linear_regression_multiple_features() {
let X = NDArray::from_matrix(vec![
vec![0.0, 0.0],
vec![1.0, 0.0],
vec![0.0, 1.0],
vec![1.0, 1.0],
vec![2.0, 1.0],
vec![1.0, 2.0],
vec![2.0, 2.0],
]);
let y = NDArray::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]); let (theta, history) = Nabla::linear_regression(&X, &y, 0.01, 1000);
println!("{:?}", theta[0]);
println!("{:?}", theta[1]);
println!("{:?}", theta[2]);
assert!((theta[0] - 1.0).abs() < 0.1); assert!((theta[1] - 1.0).abs() < 0.1); assert!((theta[2] - 2.0).abs() < 0.1); assert!(history.first().unwrap() > history.last().unwrap());
}
}