nabla_ml/nab_activations.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
use crate::nab_array::NDArray;
use crate::nab_math::NabMath;
pub struct NablaActivation;
impl NablaActivation {
/// Applies the Rectified Linear Unit (ReLU) activation function in forward pass
///
/// ReLU(x) = max(0, x)
///
/// # Arguments
///
/// * `x` - Input NDArray
///
/// # Returns
///
/// NDArray with ReLU activation applied element-wise
///
/// # Example
///
/// ```
/// use nabla_ml::nab_array::NDArray;
/// use nabla_ml::nab_activations::NablaActivation;
///
/// let x = NDArray::from_vec(vec![-1.0, 0.0, 2.0]);
/// let output = NablaActivation::relu_forward(&x);
/// assert_eq!(output.data(), &[0.0, 0.0, 2.0]);
/// ```
pub fn relu_forward(x: &NDArray) -> NDArray {
NabMath::relu(x)
}
/// Computes the gradient for ReLU activation in backward pass
///
/// ReLU'(x) = 1 if x > 0, else 0
///
/// # Arguments
///
/// * `gradient` - Gradient from the next layer
/// * `x` - Original input to the ReLU function
///
/// # Returns
///
/// NDArray containing the gradients for backpropagation
pub fn relu_backward(gradient: &NDArray, x: &NDArray) -> NDArray {
// ReLU derivative: 1 if x > 0, 0 otherwise
let dx = x.map(|val| if val > 0.0 { 1.0 } else { 0.0 });
gradient * &dx
}
/// Applies the Softmax activation function in forward pass
///
/// Softmax(x)_i = exp(x_i) / sum(exp(x_j))
///
/// # Arguments
///
/// * `x` - Input NDArray
/// * `axis` - Optional axis along which to apply softmax
///
/// # Returns
///
/// NDArray with softmax probabilities that sum to 1
///
/// # Example
///
/// ```
/// use nabla_ml::nab_array::NDArray;
/// use nabla_ml::nab_activations::NablaActivation;
///
/// let x = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
/// let output = NablaActivation::softmax_forward(&x, None);
/// let sum: f64 = output.data().iter().sum();
/// assert!((sum - 1.0).abs() < 1e-6);
/// ```
pub fn softmax_forward(x: &NDArray, axis: Option<usize>) -> NDArray {
NabMath::softmax(x, axis)
}
/// Computes the gradient for Softmax activation in backward pass
///
/// Note: For numerical stability, the actual softmax gradient computation
/// is typically combined with the loss function gradient.
///
/// # Arguments
///
/// * `gradient` - Gradient from the loss function
/// * `output` - Output from the softmax forward pass
///
/// # Returns
///
/// NDArray containing the gradients for backpropagation
pub fn softmax_backward(gradient: &NDArray, _output: &NDArray) -> NDArray {
// Softmax derivative is handled in loss function for numerical stability
gradient.clone()
}
/// Applies the Sigmoid activation function in forward pass
///
/// sigmoid(x) = 1 / (1 + exp(-x))
///
/// # Arguments
///
/// * `x` - Input NDArray
///
/// # Returns
///
/// NDArray with values squashed between 0 and 1
///
/// # Example
///
/// ```
/// use nabla_ml::nab_array::NDArray;
/// use nabla_ml::nab_activations::NablaActivation;
///
/// let x = NDArray::from_vec(vec![-1.0, 0.0, 1.0]);
/// let output = NablaActivation::sigmoid_forward(&x);
/// // Values should be between 0 and 1
/// for &val in output.data() {
/// assert!(val > 0.0 && val < 1.0);
/// }
/// ```
pub fn sigmoid_forward(x: &NDArray) -> NDArray {
NabMath::sigmoid(x)
}
/// Computes the gradient for Sigmoid activation in backward pass
///
/// sigmoid'(x) = sigmoid(x) * (1 - sigmoid(x))
///
/// # Arguments
///
/// * `gradient` - Gradient from the next layer
/// * `output` - Output from the sigmoid forward pass
///
/// # Returns
///
/// NDArray containing the gradients for backpropagation
pub fn sigmoid_backward(gradient: &NDArray, output: &NDArray) -> NDArray {
let sigmoid_derivative = output * &(output.scalar_sub(1.0).multiply_scalar(-1.0));
gradient * &sigmoid_derivative
}
/// Applies the Leaky ReLU activation function in forward pass
///
/// leaky_relu(x) = x if x > 0, else alpha * x
///
/// # Arguments
///
/// * `x` - Input NDArray
/// * `alpha` - Slope for negative values (default: 0.01)
///
/// # Returns
///
/// NDArray with Leaky ReLU activation applied element-wise
///
/// # Example
///
/// ```
/// use nabla_ml::nab_array::NDArray;
/// use nabla_ml::nab_activations::NablaActivation;
///
/// let x = NDArray::from_vec(vec![-2.0, 0.0, 2.0]);
/// let output = NablaActivation::leaky_relu_forward(&x, Some(0.1));
/// // Negative values are scaled by alpha
/// assert_eq!(output.data()[0], -0.2);
/// // Positive values remain unchanged
/// assert_eq!(output.data()[2], 2.0);
/// ```
pub fn leaky_relu_forward(x: &NDArray, alpha: Option<f64>) -> NDArray {
NabMath::leaky_relu(x, alpha)
}
/// Computes the gradient for Leaky ReLU activation in backward pass
///
/// leaky_relu'(x) = 1 if x > 0, else alpha
///
/// # Arguments
///
/// * `gradient` - Gradient from the next layer
/// * `x` - Original input to the Leaky ReLU function
/// * `alpha` - Slope for negative values (default: 0.01)
///
/// # Returns
///
/// NDArray containing the gradients for backpropagation
pub fn leaky_relu_backward(gradient: &NDArray, x: &NDArray, alpha: Option<f64>) -> NDArray {
let alpha = alpha.unwrap_or(0.01);
let dx = x.map(|val| if val >= 0.0 { 1.0 } else { alpha });
gradient * &dx
}
/// Applies the Hyperbolic Tangent (tanh) activation function in forward pass
///
/// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
///
/// # Arguments
///
/// * `x` - Input NDArray
///
/// # Returns
///
/// NDArray with values squashed between -1 and 1
///
/// # Example
///
/// ```
/// use nabla_ml::nab_array::NDArray;
/// use nabla_ml::nab_activations::NablaActivation;
///
/// let x = NDArray::from_vec(vec![-1.0, 0.0, 1.0]);
/// let output = NablaActivation::tanh_forward(&x);
/// // Values should be between -1 and 1
/// for &val in output.data() {
/// assert!(val >= -1.0 && val <= 1.0);
/// }
/// ```
pub fn tanh_forward(x: &NDArray) -> NDArray {
NabMath::tanh(x)
}
/// Computes the gradient for tanh activation in backward pass
///
/// tanh'(x) = 1 - tanh²(x)
///
/// # Arguments
///
/// * `gradient` - Gradient from the next layer
/// * `output` - Output from the tanh forward pass
///
/// # Returns
///
/// NDArray containing the gradients for backpropagation
pub fn tanh_backward(gradient: &NDArray, output: &NDArray) -> NDArray {
let tanh_derivative = output.multiply(output) // tanh²(x)
.scalar_sub(1.0) // -1 + tanh²(x)
.multiply_scalar(-1.0); // 1 - tanh²(x)
gradient * &tanh_derivative
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_relu_forward_backward() {
// Test forward pass with mixed positive/negative values
let x = NDArray::from_vec(vec![-1.0, 0.0, 2.0]);
let forward = NablaActivation::relu_forward(&x);
// Verify ReLU zeros out negative values and keeps positive values
assert_eq!(forward.data(), &[0.0, 0.0, 2.0]);
// Test backward pass with uniform gradient
let gradient = NDArray::from_vec(vec![1.0, 1.0, 1.0]);
let backward = NablaActivation::relu_backward(&gradient, &x);
// Verify gradient is zero for negative inputs and unchanged for positive inputs
assert_eq!(backward.data(), &[0.0, 0.0, 1.0]);
}
#[test]
fn test_softmax_forward_backward() {
// Test forward pass with increasing values
let x = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
let forward = NablaActivation::softmax_forward(&x, None);
// Verify softmax output sums to 1 (probability distribution)
let sum: f64 = forward.data().iter().sum();
assert!((sum - 1.0).abs() < 1e-6);
// Verify softmax maintains relative ordering (monotonicity)
let mut prev = 0.0;
for &val in forward.data() {
assert!(val >= prev);
prev = val;
}
}
#[test]
fn test_sigmoid_forward_backward() {
// Test forward pass with various inputs
let x = NDArray::from_vec(vec![-2.0, 0.0, 2.0]);
let forward = NablaActivation::sigmoid_forward(&x);
// Verify sigmoid output is between 0 and 1
for &val in forward.data() {
assert!(val > 0.0 && val < 1.0);
}
// Verify sigmoid(0) ≈ 0.5
assert!((forward.data()[1] - 0.5).abs() < 1e-6);
// Test backward pass
let gradient = NDArray::from_vec(vec![1.0, 1.0, 1.0]);
let backward = NablaActivation::sigmoid_backward(&gradient, &forward);
// Verify gradient shape matches input
assert_eq!(backward.shape(), x.shape());
// Verify gradient is maximum at x = 0 (where sigmoid'(0) = 0.25)
assert!(backward.data()[1] > backward.data()[0]);
assert!(backward.data()[1] > backward.data()[2]);
}
#[test]
fn test_leaky_relu_forward_backward() {
// Test forward pass with default alpha
let x = NDArray::from_vec(vec![-2.0, 0.0, 2.0]);
let forward = NablaActivation::leaky_relu_forward(&x, None);
// Verify positive values remain unchanged
assert_eq!(forward.data()[2], 2.0);
// Verify negative values are scaled by default alpha (0.01)
assert_eq!(forward.data()[0], -0.02);
// Verify zero remains unchanged
assert_eq!(forward.data()[1], 0.0);
// Test forward pass with custom alpha
let forward_custom = NablaActivation::leaky_relu_forward(&x, Some(0.1));
// Verify negative values are scaled by custom alpha
assert_eq!(forward_custom.data()[0], -0.2);
// Test backward pass
let gradient = NDArray::from_vec(vec![1.0, 1.0, 1.0]);
let backward = NablaActivation::leaky_relu_backward(&gradient, &x, Some(0.1));
// Verify gradient for positive values is unchanged
assert_eq!(backward.data()[2], 1.0);
// Verify gradient for negative values is scaled by alpha
assert_eq!(backward.data()[0], 0.1);
// Verify gradient at zero is 1 (positive side of derivative)
assert_eq!(backward.data()[1], 1.0);
}
#[test]
fn test_tanh_forward_backward() {
// Test forward pass with various inputs
let x = NDArray::from_vec(vec![-2.0, 0.0, 2.0]);
let forward = NablaActivation::tanh_forward(&x);
// Verify tanh output is between -1 and 1
for &val in forward.data() {
assert!(val >= -1.0 && val <= 1.0);
}
// Verify tanh(0) = 0
assert!(forward.data()[1].abs() < 1e-6);
// Test backward pass
let gradient = NDArray::from_vec(vec![1.0, 1.0, 1.0]);
let backward = NablaActivation::tanh_backward(&gradient, &forward);
// Verify gradient shape matches input
assert_eq!(backward.shape(), x.shape());
// Verify gradient is maximum at x = 0 (where tanh'(0) = 1)
assert!(backward.data()[1] > backward.data()[0]);
assert!(backward.data()[1] > backward.data()[2]);
// Verify gradient at x = 0 is close to 1
assert!((backward.data()[1] - 1.0).abs() < 1e-6);
}
}