nabla_ml/
nab_model.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
use crate::nab_array::NDArray;
use crate::nab_layers::NabLayer;
use crate::nab_optimizers::NablaOptimizer;
use crate::nab_loss::NabLoss;
use std::collections::HashMap;


/// Represents a node in the computation graph
pub struct Node {
    pub layer: NabLayer,
    pub inputs: Vec<usize>,  // Indices of input nodes
    pub output_shape: Vec<usize>,
}

/// Represents a model using the Functional API
/// 
/// # Examples
/// 
/// ```rust
/// use nabla_ml::nab_model::NabModel;
/// use nabla_ml::nab_layers::NabLayer;
/// 
/// // Create model architecture
/// let input = NabModel::input(vec![784]);
/// let dense1 = NabLayer::dense(784, 512, Some("relu"), Some("dense1"));
/// let x = input.apply(dense1);
/// let output_layer = NabLayer::dense(512, 10, Some("softmax"), Some("output"));
/// let output = x.apply(output_layer);
/// 
/// // Create and compile model
/// let mut model = NabModel::new_functional(vec![input], vec![output]);
/// model.compile(
///     "sgd",
///     0.1,
///     "categorical_crossentropy",
///     vec!["accuracy".to_string()]
/// );
/// ```
#[allow(dead_code)]
#[derive(Clone)]
pub struct NabModel {
    layers: Vec<NabLayer>,
    optimizer_type: String,
    learning_rate: f64,
    loss_type: String,  // e.g. "mse", "categorical_crossentropy"
    metrics: Vec<String>,
}

/// Represents an input node in the computation graph
#[derive(Clone)]
pub struct Input {
    shape: Vec<usize>,
    node_index: Option<usize>,
}

/// Represents an output node in the computation graph
#[derive(Clone)]
#[allow(dead_code)]
pub struct Output {
    layer: NabLayer,
    inputs: Vec<usize>,
    output_shape: Vec<usize>,
    previous_output: Option<Box<Output>>,
}

impl Input {
    /// Applies a layer to this input, preserving node connectivity
    pub fn apply<L: Into<NabLayer>>(&self, layer: L) -> Output {
        let mut layer = layer.into();
        let output_shape = layer.compute_output_shape(&self.shape);
        
        // Generate new node index for this layer
        static mut NEXT_LAYER_ID: usize = 1; // 0 is reserved for input
        let layer_id = unsafe {
            let id = NEXT_LAYER_ID;
            NEXT_LAYER_ID += 1;
            id
        };
        
        // Set layer's node index and inputs
        layer.set_node_index(layer_id);
        
        println!("Connecting layer {} (id: {}) to input (id: {})", 
            layer.get_name(), 
            layer_id,
            self.node_index.unwrap()
        );
        
        Output {
            layer,
            inputs: vec![self.node_index.unwrap()],
            output_shape,
            previous_output: None,
        }
    }
}

impl Output {
    /// Applies a layer to this output, maintaining the graph structure
    pub fn apply<L: Into<NabLayer>>(&self, layer: L) -> Output {
        let mut layer = layer.into();
        let output_shape = layer.compute_output_shape(&self.output_shape);
        
        // Generate new node index for this layer
        static mut NEXT_LAYER_ID: usize = 1; // 0 is reserved for input
        let layer_id = unsafe {
            let id = NEXT_LAYER_ID;
            NEXT_LAYER_ID += 1;
            id
        };
        
        // Set layer's node index and inputs
        layer.set_node_index(layer_id);
        
        println!("Connecting layer {} (id: {}) to {} (id: {})", 
            layer.get_name(), 
            layer_id,
            self.layer.get_name(), 
            self.layer.node_index.expect("Layer node index not set")
        );
        
        Output {
            layer,
            inputs: vec![layer_id],
            output_shape,
            previous_output: Some(Box::new(self.clone())),
        }
    }

    /// Returns the previous layer that produced this output
    pub fn get_previous_layer(&self) -> Option<&NabLayer> {
        // Return layer that produced this output
        None // TODO: Implement layer tracking
    }
}

#[allow(dead_code)]
impl NabModel {
    /// Creates a new input layer with specified shape
    /// 
    /// # Arguments
    /// * `shape` - Shape of input excluding batch dimension
    /// 
    /// # Examples
    /// ```ignore
    /// let input = NabModel::input(vec![784]); // For MNIST images
    /// ```
    pub fn input(shape: Vec<usize>) -> Input {
        static mut NEXT_NODE_ID: usize = 0;
        let node_index = unsafe {
            let id = NEXT_NODE_ID;
            NEXT_NODE_ID += 1;
            id
        };
        
        Input {
            shape,
            node_index: Some(node_index),
        }
    }

    /// Creates a new model
    pub fn new() -> Self {
        NabModel {
            layers: Vec::new(),
            optimizer_type: String::new(),
            learning_rate: 0.0,
            loss_type: String::new(),
            metrics: Vec::new(),
        }
    }

    /// Adds a layer to the model
    pub fn add(&mut self, layer: NabLayer) -> &mut Self {
        self.layers.push(layer);
        self
    }

    /// Compiles the model with training configuration
    /// 
    /// # Arguments
    /// * `optimizer_type` - Optimization algorithm ("sgd", "adam", etc)
    /// * `learning_rate` - Learning rate for optimization
    /// * `loss_type` - Loss function ("mse", "categorical_crossentropy")
    /// * `metrics` - Metrics to track during training
    pub fn compile(&mut self, optimizer_type: &str, learning_rate: f64, 
                  loss_type: &str, metrics: Vec<String>) {
        self.optimizer_type = optimizer_type.to_string();
        self.learning_rate = learning_rate;
        self.loss_type = loss_type.to_string();
        self.metrics = metrics;
    }

    /// Trains for one epoch
    fn train_epoch(&mut self, x: &NDArray, y: &NDArray, batch_size: usize) -> HashMap<String, f64> {
        let mut metrics = HashMap::new();
        let mut total_loss = 0.0;
        let mut total_correct = 0;
        let num_samples = x.shape()[0];
        let num_batches = (num_samples + batch_size - 1) / batch_size;

        // Process mini-batches
        for batch_idx in 0..num_batches {
            let start_idx = batch_idx * batch_size;
            let end_idx = (start_idx + batch_size).min(num_samples);
            
            // Get batch data
            let x_batch = x.slice(start_idx, end_idx);
            let y_batch = y.slice(start_idx, end_idx);
            
            // Forward and backward pass as one operation
            let (predictions, loss) = self.forward_backward(&x_batch, &y_batch);
            
            // Accumulate metrics
            total_loss += loss * (end_idx - start_idx) as f64;
            total_correct += self.count_correct(&predictions, &y_batch);
        }
        
        // Calculate average metrics
        metrics.insert("loss".to_string(), total_loss / num_samples as f64);
        metrics.insert("accuracy".to_string(), total_correct as f64 / num_samples as f64);
        
        metrics
    }

    fn forward_backward(&mut self, x_batch: &NDArray, y_batch: &NDArray) -> (NDArray, f64) {
        // Forward pass
        let predictions = self.predict(x_batch);
        let loss = self.calculate_loss(&predictions, y_batch);
        let loss_grad = self.calculate_loss_gradient(&predictions, y_batch);
        
        // Backward pass
        let mut gradient = loss_grad;
        let learning_rate = self.learning_rate;  // Cache learning rate
        
        for layer in self.layers.iter_mut().rev() {
            if layer.is_trainable() {
                gradient = layer.backward(&gradient);
                
                // Update weights using cached learning rate
                if let Some(weights) = layer.weights.as_mut() {
                    let weight_grads = layer.weight_gradients.as_ref().unwrap();
                    NablaOptimizer::sgd_update(weights, weight_grads, learning_rate);
                }
                if let Some(biases) = layer.biases.as_mut() {
                    let bias_grads = layer.bias_gradients.as_ref().unwrap();
                    NablaOptimizer::sgd_update(biases, bias_grads, learning_rate);
                }
            }
        }
        
        (predictions, loss)
    }

    fn count_correct(&self, predictions: &NDArray, targets: &NDArray) -> usize {
        let pred_classes = predictions.argmax(Some(1));
        let true_classes = targets.argmax(Some(1));
        
        pred_classes.iter()
            .zip(true_classes.iter())
            .filter(|(&p, &t)| p == t)
            .count()
    }

    /// Creates a new model from input and output nodes
    pub fn new_functional(inputs: Vec<Input>, outputs: Vec<Output>) -> Self {
        let mut layers = Vec::new();
        let mut node_to_layer = HashMap::new();
        
        // First pass: Add input layers
        for input in inputs {
            let mut layer = NabLayer::input(input.shape.clone(), None);
            layer.set_node_index(input.node_index.unwrap());
            node_to_layer.insert(input.node_index.unwrap(), layers.len());
            layers.push(layer);
        }
        
        // Second pass: Build layer graph
        for output in outputs {
            let mut current = output;
            let mut layer_stack = vec![];
            
            // Collect all layers from output to input
            while !node_to_layer.contains_key(&current.layer.node_index.unwrap()) {
                println!("Processing layer: {} (id: {})", 
                    current.layer.get_name(),
                    current.layer.node_index.unwrap()
                );
                
                layer_stack.push(current.layer.clone());
                
                if let Some(prev) = current.previous_output {
                    current = *prev;
                } else {
                    break;
                }
            }
            
            // Add layers in correct order
            for layer in layer_stack.into_iter().rev() {
                println!("Adding layer: {} -> {:?}", layer.get_name(), layer.get_output_shape());
                layers.push(layer);
            }
        }

        // Print model summary
        println!("\nModel Summary:");
        for (i, layer) in layers.iter().enumerate() {
            println!("Layer {}: {} (id: {}) -> {:?}", 
                i,
                layer.get_name(),
                layer.node_index.unwrap(),
                layer.get_output_shape()
            );
        }

        NabModel { layers, optimizer_type: String::new(), learning_rate: 0.0, loss_type: String::new(), metrics: Vec::new() }
    }

    /// Trains the model on input data
    /// 
    /// # Arguments
    /// * `x_train` - Training features
    /// * `y_train` - Training labels 
    /// * `batch_size` - Mini-batch size
    /// * `epochs` - Number of training epochs
    /// * `validation_data` - Optional validation dataset
    /// 
    /// # Returns
    /// HashMap containing training history metrics
    /// 
    /// # Examples
    /// ```ignore
    /// let history = model.fit(
    ///     &x_train,
    ///     &y_train, 
    ///     64,    // batch_size
    ///     5,     // epochs
    ///     Some((&x_test, &y_test))
    /// );
    /// ```
    pub fn fit(&mut self, x_train: &NDArray, y_train: &NDArray,
               batch_size: usize, epochs: usize,
               validation_data: Option<(&NDArray, &NDArray)>) 
               -> HashMap<String, Vec<f64>> {
        let mut history = HashMap::new();
        let mut train_metrics = Vec::new();
        let mut val_metrics = Vec::new();

        for epoch in 0..epochs {
            // Training phase
            let metrics = self.train_epoch(x_train, y_train, batch_size);
            train_metrics.push(metrics);

            // Validation phase
            if let Some((x_val, y_val)) = validation_data {
                let val_metric = self.evaluate(x_val, y_val, batch_size);
                val_metrics.push(val_metric);
            }

            // Print progress
            self.print_progress(epoch + 1, epochs, &train_metrics[epoch], 
                              val_metrics.last());
        }

        // Store history
        history.insert("loss".to_string(), 
            train_metrics.iter().map(|m| m["loss"]).collect());
        history.insert("accuracy".to_string(), 
            train_metrics.iter().map(|m| m["accuracy"]).collect());

        if !val_metrics.is_empty() {
            history.insert("val_loss".to_string(), 
                val_metrics.iter().map(|m| m["loss"]).collect());
            history.insert("val_accuracy".to_string(), 
                val_metrics.iter().map(|m| m["accuracy"]).collect());
        }

        history
    }

    /// Prints training progress
    fn print_progress(
        &self,
        epoch: usize,
        total_epochs: usize,
        train_metrics: &HashMap<String, f64>,
        val_metrics: Option<&HashMap<String, f64>>,
    ) {
        print!("Epoch {}/{} - ", epoch, total_epochs);
        for (name, value) in train_metrics {
            print!("{}: {:.4} ", name, value);
        }
        if let Some(val_metrics) = val_metrics {
            for (name, value) in val_metrics {
                print!("val_{}: {:.4} ", name, value);
            }
        }
        println!();
    }

    /// Evaluates model performance on test data
    /// 
    /// # Arguments
    /// * `x_test` - Test features
    /// * `y_test` - Test labels
    /// * `batch_size` - Batch size for evaluation
    /// 
    /// # Returns
    /// HashMap containing evaluation metrics
    #[allow(unused_variables)]
    pub fn evaluate(&mut self, x_test: &NDArray, y_test: &NDArray,
                   batch_size: usize) -> HashMap<String, f64> {
        let mut metrics = HashMap::new();
        let predictions = self.predict(x_test);
        
        // Calculate loss
        let loss = self.calculate_loss(&predictions, y_test);
        metrics.insert("loss".to_string(), loss);
        
        // Calculate other metrics
        for metric in &self.metrics {
            match metric.as_str() {
                "accuracy" => {
                    let acc = self.calculate_accuracy(&predictions, y_test);
                    metrics.insert("accuracy".to_string(), acc);
                }
                _ => {}
            }
        }
        
        metrics
    }

    /// Calculates accuracy for classification tasks
    fn calculate_accuracy(&self, predictions: &NDArray, targets: &NDArray) -> f64 {
        let pred_classes = predictions.argmax(Some(1));
        let true_classes = targets.argmax(Some(1));
        
        let correct = pred_classes.iter()
            .zip(true_classes.iter())
            .filter(|(&p, &t)| p == t)
            .count();
            
        correct as f64 / predictions.shape()[0] as f64
    }

    /// Makes predictions on input data
    /// 
    /// # Arguments
    /// * `x` - Input features to predict on
    /// 
    /// # Returns
    /// NDArray of model predictions
    pub fn predict(&mut self, x: &NDArray) -> NDArray {
        let mut current = x.clone();
        for layer in &mut self.layers {
            current = layer.forward(&current, false);
        }
        current
    }

    fn calculate_loss(&self, predictions: &NDArray, targets: &NDArray) -> f64 {
        match self.loss_type.as_str() {
            "mse" => NabLoss::mean_squared_error(predictions, targets),
            "categorical_crossentropy" => NabLoss::cross_entropy_loss(predictions, targets),
            _ => NabLoss::mean_squared_error(predictions, targets),
        }
    }

    fn calculate_loss_gradient(&self, predictions: &NDArray, targets: &NDArray) -> NDArray {
        match self.loss_type.as_str() {
            "mse" => predictions.subtract(targets).divide_scalar(predictions.shape()[0] as f64),
            "categorical_crossentropy" => predictions.subtract(targets).divide_scalar(predictions.shape()[0] as f64),
            _ => predictions.subtract(targets).divide_scalar(predictions.shape()[0] as f64),
        }
    }

    // Add debug method
    pub fn print_layers(&self) {
        println!("\nLayer stack:");
        for (i, layer) in self.layers.iter().enumerate() {
            println!("{}: {} -> {:?}", i, layer.get_name(), layer.get_output_shape());
        }
    }
}

#[cfg(test)]
#[allow(unused_imports)]
#[allow(unused_variables)]
mod tests {
    use super::*;
    use crate::nab_activations::NablaActivation;
    use crate::nab_optimizers::NablaOptimizer;
    use crate::nab_loss::NabLoss;
    use crate::nab_mnist::NabMnist;
    use crate::nab_utils::NabUtils;

    #[test]
    fn test_linear_regression() {
        // Create synthetic data for linear regression
        // y = 2x + 1 with some noise
        let x_data = NDArray::from_matrix(vec![
            vec![1.0], vec![2.0], vec![3.0], vec![4.0], vec![5.0]
        ]);
        let y_data = NDArray::from_matrix(vec![
            vec![3.1], vec![5.0], vec![6.9], vec![9.2], vec![11.0]
        ]);

        // Create model architecture
        let input = NabModel::input(vec![1]);
        let output_layer = NabLayer::dense(1, 1, None, Some("linear_output"));
        let output = input.apply(output_layer);

        // Create and compile model
        let mut model = NabModel::new_functional(vec![input], vec![output]);
        model.compile(
            "sgd",
            0.01,
            "mse",
            vec!["mse".to_string()]
        );

        // Train model for multiple epochs
        for _ in 0..100 {  // Increase training iterations
            model.train_epoch(&x_data, &y_data, x_data.shape()[0]); // Use full batch
        }
        
        // Make predictions
        let predictions = model.predict(&x_data);
        
        // Verify predictions follow roughly linear pattern
        let pred_vec = predictions.data();
        for i in 1..pred_vec.len() {
            assert!(pred_vec[i] > pred_vec[i-1], 
                "Predictions should increase monotonically. Found {} <= {} at index {}", 
                pred_vec[i], pred_vec[i-1], i
            );
        }
    }


    /// Tests full training pipeline on MNIST dataset
    /// 
    /// This test:
    /// 1. Loads and preprocesses MNIST data
    /// 2. Creates a neural network with:
    ///    - Input layer (784 units)
    ///    - Dense layer (512 units, ReLU)
    ///    - Dense layer (256 units, ReLU) 
    ///    - Output layer (10 units, softmax)
    /// 3. Compiles with SGD optimizer and cross-entropy loss
    /// 4. Trains for 5 epochs
    /// 5. Verifies accuracy exceeds 85%
    #[test]
    fn test_mnist_full_pipeline() {
    //     // Step 1: Load MNIST data
    //     println!("Loading MNIST data...");
    //     let ((x_train, y_train), (x_test, y_test)) = NabUtils::load_and_split_dataset("datasets/mnist_test", 80.0).unwrap();

    //     // Step 2: Normalize input data (scale pixels to 0-1)
    //     println!("Normalizing data...");
    //     let x_train = x_train.divide_scalar(255.0);
    //     let x_test = x_test.divide_scalar(255.0);

    //     // Step 2.5: Reshape input data
    //     let x_train = x_train.reshape(&[x_train.shape()[0], 784])
    //         .expect("Failed to reshape training data");
    //     let x_test = x_test.reshape(&[x_test.shape()[0], 784])
    //         .expect("Failed to reshape test data");

    //     // Step 2.6: One-hot encode target data
    //     println!("One-hot encoding targets...");
    //     let y_train = NDArray::one_hot_encode(&y_train);
    //     let y_test = NDArray::one_hot_encode(&y_test);
            

    //     println!("Data shapes:");
    //     println!("x_train: {:?}", x_train.shape());
    //     println!("y_train: {:?}", y_train.shape());
    //     println!("x_test: {:?}", x_test.shape());
    //     println!("y_test: {:?}", y_test.shape());

    //     // Step 3: Create model architecture
    //     println!("Creating model...");
    //     let input = NabModel::input(vec![784]);  // 28x28 = 784 pixels

    //     // Dense layer with 512 units and ReLU activation
    //     let dense1 = NabLayer::dense(784, 512, Some("relu"), Some("dense1"));
    //     let x = input.apply(dense1);

    //     // Dense layer with 256 units and ReLU activation
    //     let dense2 = NabLayer::dense(512, 256, Some("relu"), Some("dense2"));
    //     let x = x.apply(dense2);

    //     // Output layer with 10 units (one per digit) and softmax activation
    //     let output_layer = NabLayer::dense(256, 10, Some("softmax"), Some("output"));
    //     let output = x.apply(output_layer);

    //     // Step 4: Create and compile model
    //     println!("Compiling model...");
    //     let mut model = NabModel::new_functional(vec![input], vec![output]);
    //     model.compile(
    //         "sgd",                      
    //         0.1,                        // Increase learning rate from 0.01 to 0.1
    //         "categorical_crossentropy", 
    //         vec!["accuracy".to_string()]
    //     );

    //     // Step 5: Train model
    //     println!("Training model...");
    //     let history = model.fit(
    //         &x_train,
    //         &y_train,
    //         64,             // Increase batch size from 32 to 64
    //         5,             // Increase epochs from 2 to 10
    //         Some((&x_test, &y_test))
    //     );

    //     // Step 6: Evaluate final model
    //     println!("Evaluating model...");
    //     let eval_metrics = model.evaluate(&x_test, &y_test, 32);
        
    //     // Print final results
    //     println!("Final test accuracy: {:.2}%", eval_metrics["accuracy"] * 100.0);
        
    //     // Verify model achieved reasonable accuracy (>85%)
    //     assert!(eval_metrics["accuracy"] > 0.85, 
    //         "Model accuracy ({:.2}%) below expected threshold", 
    //         eval_metrics["accuracy"] * 100.0
    //     );

    //     // Verify training history contains expected metrics
    //     assert!(history.contains_key("loss"));
    //     assert!(history.contains_key("accuracy"));
    //     assert!(history.contains_key("val_loss"));
    //     assert!(history.contains_key("val_accuracy"));
    }
}