nabla_ml/nab_optimizers.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
use crate::nab_array::NDArray;
pub struct NablaOptimizer;
impl NablaOptimizer {
/// Performs Stochastic Gradient Descent (SGD) update
///
/// w = w - learning_rate * gradient
///
/// # Arguments
///
/// * `weights` - NDArray of current weights to update
/// * `gradient` - NDArray of gradients for the weights
/// * `learning_rate` - Learning rate for the update
///
/// # Example
///
/// ```
/// use nabla_ml::nab_array::NDArray;
/// use nabla_ml::nab_optimizers::NablaOptimizer;
///
/// let mut weights = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
/// let gradients = NDArray::from_vec(vec![0.1, 0.2, 0.3]);
/// let learning_rate = 0.1;
///
/// NablaOptimizer::sgd_update(&mut weights, &gradients, learning_rate);
/// ```
pub fn sgd_update(weights: &mut NDArray, gradient: &NDArray, learning_rate: f64) {
let update = gradient.multiply_scalar(learning_rate);
*weights = weights.subtract(&update);
}
/// Performs SGD update with momentum
///
/// v = momentum * v - learning_rate * gradient
/// w = w + v
///
/// # Arguments
///
/// * `weights` - NDArray of current weights to update
/// * `gradient` - NDArray of gradients for the weights
/// * `velocity` - Mutable reference to momentum velocity
/// * `learning_rate` - Learning rate for the update
/// * `momentum` - Momentum coefficient (default: 0.9)
pub fn sgd_momentum_update(
weights: &mut NDArray,
gradient: &NDArray,
velocity: &mut NDArray,
learning_rate: f64,
momentum: f64,
) {
// Update velocity
*velocity = velocity.multiply_scalar(momentum)
.subtract(&gradient.multiply_scalar(learning_rate));
// Update weights using velocity
*weights = weights.clone().add(velocity);
}
/// Performs RMSprop update
///
/// cache = decay_rate * cache + (1 - decay_rate) * gradient^2
/// w = w - learning_rate * gradient / (sqrt(cache) + epsilon)
///
/// # Arguments
///
/// * `weights` - NDArray of current weights to update
/// * `gradient` - NDArray of gradients for the weights
/// * `cache` - Running average of squared gradients
/// * `learning_rate` - Learning rate for the update
/// * `decay_rate` - Decay rate for running average (default: 0.9)
/// * `epsilon` - Small value for numerical stability (default: 1e-8)
///
/// # Example
///
/// ```
/// use nabla_ml::nab_array::NDArray;
/// use nabla_ml::nab_optimizers::NablaOptimizer;
///
/// let mut weights = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
/// let gradients = NDArray::from_vec(vec![0.1, 0.2, 0.3]);
/// let mut cache = NDArray::zeros(vec![3]);
/// let learning_rate = 0.01;
/// let decay_rate = 0.9;
/// let epsilon = 1e-8;
///
/// NablaOptimizer::rmsprop_update(
/// &mut weights,
/// &gradients,
/// &mut cache,
/// learning_rate,
/// decay_rate,
/// epsilon
/// );
/// ```
pub fn rmsprop_update(
weights: &mut NDArray,
gradient: &NDArray,
cache: &mut NDArray,
learning_rate: f64,
decay_rate: f64,
epsilon: f64,
) {
// Update cache
*cache = cache.multiply_scalar(decay_rate)
.add(&gradient.multiply(gradient).multiply_scalar(1.0 - decay_rate));
// Compute update
let update = gradient.divide(
&cache.sqrt().add_scalar(epsilon)
).multiply_scalar(learning_rate);
// Update weights
*weights = weights.subtract(&update);
}
/// Performs Adam (Adaptive Moment Estimation) update
///
/// m = beta1 * m + (1 - beta1) * gradient // Update first moment
/// v = beta2 * v + (1 - beta2) * gradient^2 // Update second moment
/// m_hat = m / (1 - beta1^t) // Bias correction
/// v_hat = v / (1 - beta2^t) // Bias correction
/// w = w - learning_rate * m_hat / (sqrt(v_hat) + epsilon)
///
/// # Arguments
///
/// * `weights` - NDArray of current weights to update
/// * `gradient` - NDArray of gradients for the weights
/// * `m` - First moment vector (momentum)
/// * `v` - Second moment vector (uncentered variance)
/// * `t` - Current timestep (starting from 1)
/// * `learning_rate` - Learning rate for the update
/// * `beta1` - Exponential decay rate for first moment (default: 0.9)
/// * `beta2` - Exponential decay rate for second moment (default: 0.999)
/// * `epsilon` - Small value for numerical stability (default: 1e-8)
///
/// # Example
///
/// ```
/// use nabla_ml::nab_array::NDArray;
/// use nabla_ml::nab_optimizers::NablaOptimizer;
///
/// let mut weights = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
/// let gradients = NDArray::from_vec(vec![0.1, 0.2, 0.3]);
/// let mut m = NDArray::zeros(vec![3]);
/// let mut v = NDArray::zeros(vec![3]);
/// let t = 1;
/// let learning_rate = 0.001;
/// let beta1 = 0.9;
/// let beta2 = 0.999;
/// let epsilon = 1e-8;
///
/// NablaOptimizer::adam_update(
/// &mut weights,
/// &gradients,
/// &mut m,
/// &mut v,
/// t,
/// learning_rate,
/// beta1,
/// beta2,
/// epsilon
/// );
/// ```
pub fn adam_update(
weights: &mut NDArray,
gradient: &NDArray,
m: &mut NDArray,
v: &mut NDArray,
t: usize,
learning_rate: f64,
beta1: f64,
beta2: f64,
epsilon: f64,
) {
// Update biased first moment estimate
*m = m.multiply_scalar(beta1)
.add(&gradient.multiply_scalar(1.0 - beta1));
// Update biased second raw moment estimate
*v = v.multiply_scalar(beta2)
.add(&gradient.multiply(gradient).multiply_scalar(1.0 - beta2));
// Compute bias-corrected first moment estimate
let m_hat = m.multiply_scalar(1.0 / (1.0 - beta1.powi(t as i32)));
// Compute bias-corrected second raw moment estimate
let v_hat = v.multiply_scalar(1.0 / (1.0 - beta2.powi(t as i32)));
// Compute the update
let update = m_hat.divide(&v_hat.sqrt().add_scalar(epsilon))
.multiply_scalar(learning_rate);
// Apply update to weights
*weights = weights.subtract(&update);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_sgd_update() {
// Initialize test data
let mut weights = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
let gradients = NDArray::from_vec(vec![0.1, 0.2, 0.3]);
let learning_rate = 0.1;
// Store initial weights
let initial_weights = weights.clone();
// Perform update
NablaOptimizer::sgd_update(&mut weights, &gradients, learning_rate);
// Verify weights were updated correctly
for i in 0..weights.data().len() {
let expected = initial_weights.data()[i] - learning_rate * gradients.data()[i];
assert!((weights.data()[i] - expected).abs() < 1e-6);
}
}
#[test]
fn test_sgd_momentum() {
// Initialize test data
let mut weights = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
let gradients = NDArray::from_vec(vec![0.1, 0.2, 0.3]);
let mut velocity = NDArray::zeros(vec![3]);
let learning_rate = 0.1;
let momentum = 0.9;
// Store initial weights
let initial_weights = weights.clone();
// Perform update
NablaOptimizer::sgd_momentum_update(
&mut weights,
&gradients,
&mut velocity,
learning_rate,
momentum
);
// Verify weights changed
assert!(weights.data() != initial_weights.data());
// Verify velocity is non-zero
assert!(velocity.data().iter().any(|&x| x != 0.0));
// Verify momentum effect (velocity should be -learning_rate * gradients)
for i in 0..velocity.data().len() {
assert!((velocity.data()[i] + learning_rate * gradients.data()[i]).abs() < 1e-6);
}
}
#[test]
fn test_rmsprop_update() {
// Initialize test data
let mut weights = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
let gradients = NDArray::from_vec(vec![0.1, 0.2, 0.3]);
let mut cache = NDArray::zeros(vec![3]);
let learning_rate = 0.01;
let decay_rate = 0.9;
let epsilon = 1e-8;
// Store initial values
let initial_weights = weights.clone();
let initial_cache = cache.clone();
// Perform update
NablaOptimizer::rmsprop_update(
&mut weights,
&gradients,
&mut cache,
learning_rate,
decay_rate,
epsilon
);
// Verify weights changed
assert!(weights.data() != initial_weights.data(),
"Weights should be updated");
// Verify cache was updated
assert!(cache.data() != initial_cache.data(),
"Cache should be updated");
// Verify cache contains squared gradient information
for i in 0..cache.data().len() {
let expected_cache = (1.0 - decay_rate) * gradients.data()[i].powi(2);
assert!((cache.data()[i] - expected_cache).abs() < 1e-6,
"Cache should contain squared gradient information");
}
// Test multiple updates to verify cache accumulation
let prev_cache = cache.clone();
NablaOptimizer::rmsprop_update(
&mut weights,
&gradients,
&mut cache,
learning_rate,
decay_rate,
epsilon
);
// Verify cache decay
for i in 0..cache.data().len() {
assert!(cache.data()[i] > prev_cache.data()[i],
"Cache should accumulate gradient information");
}
}
#[test]
fn test_adam_update() {
// Initialize test data
let mut weights = NDArray::from_vec(vec![1.0, 2.0, 3.0]);
let gradients = NDArray::from_vec(vec![0.1, 0.2, 0.3]);
let mut m = NDArray::zeros(vec![3]);
let mut v = NDArray::zeros(vec![3]);
let t = 1;
let learning_rate = 0.001;
let beta1 = 0.9;
let beta2 = 0.999;
let epsilon = 1e-8;
// Store initial values
let initial_weights = weights.clone();
let initial_m = m.clone();
let initial_v = v.clone();
// Perform update
NablaOptimizer::adam_update(
&mut weights,
&gradients,
&mut m,
&mut v,
t,
learning_rate,
beta1,
beta2,
epsilon
);
// Verify weights changed
assert!(weights.data() != initial_weights.data(),
"Weights should be updated");
// Verify moment estimates changed
assert!(m.data() != initial_m.data(),
"First moment should be updated");
assert!(v.data() != initial_v.data(),
"Second moment should be updated");
// Verify first moment update
for i in 0..m.data().len() {
let expected_m = (1.0 - beta1) * gradients.data()[i];
assert!((m.data()[i] - expected_m).abs() < 1e-6,
"First moment should be correctly updated");
}
// Verify second moment update
for i in 0..v.data().len() {
let expected_v = (1.0 - beta2) * gradients.data()[i].powi(2);
assert!((v.data()[i] - expected_v).abs() < 1e-6,
"Second moment should be correctly updated");
}
// Test multiple updates
let prev_m = m.clone();
let prev_v = v.clone();
NablaOptimizer::adam_update(
&mut weights,
&gradients,
&mut m,
&mut v,
t + 1,
learning_rate,
beta1,
beta2,
epsilon
);
// Verify moment accumulation
assert!(m.data().iter().zip(prev_m.data().iter())
.all(|(&new, &old)| new != old),
"First moment should accumulate");
assert!(v.data().iter().zip(prev_v.data().iter())
.all(|(&new, &old)| new != old),
"Second moment should accumulate");
}
}