1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// Copyright 2016-2019 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Constructors for randomized arrays: `rand` integration for `ndarray`.
//!
//! See [**`RandomExt`**](trait.RandomExt.html) for usage examples.
//!
//! ## Note
//!
//! `ndarray-rand` depends on [`rand` 0.8][rand].
//!
//! [`rand`][rand] and [`rand_distr`][rand_distr]
//! are re-exported as sub-modules, [`ndarray_rand::rand`](rand/index.html)
//! and [`ndarray_rand::rand_distr`](rand_distr/index.html) respectively.
//! You can use these submodules for guaranteed version compatibility or
//! convenience.
//!
//! [rand]: https://docs.rs/rand/0.8
//! [rand_distr]: https://docs.rs/rand_distr/0.4
//!
//! If you want to use a random number generator or distribution from another crate
//! with `ndarray-rand`, you need to make sure that the other crate also depends on the
//! same version of `rand`. Otherwise, the compiler will return errors saying
//! that the items are not compatible (e.g. that a type doesn't implement a
//! necessary trait).

use crate::rand::distributions::{Distribution, Uniform};
use crate::rand::rngs::SmallRng;
use crate::rand::seq::index;
use crate::rand::{thread_rng, Rng, SeedableRng};

use ndarray::{Array, Axis, RemoveAxis, ShapeBuilder};
use ndarray::{ArrayBase, DataOwned, RawData, Data, Dimension};
#[cfg(feature = "quickcheck")]
use quickcheck::{Arbitrary, Gen};

/// `rand`, re-exported for convenience and version-compatibility.
pub mod rand {
    pub use rand::*;
}

/// `rand-distr`, re-exported for convenience and version-compatibility.
pub mod rand_distr {
    pub use rand_distr::*;
}

/// Constructors for n-dimensional arrays with random elements.
///
/// This trait extends ndarray’s `ArrayBase` and can not be implemented
/// for other types.
///
/// The default RNG is a fast automatically seeded rng (currently
/// [`rand::rngs::SmallRng`], seeded from [`rand::thread_rng`]).
///
/// Note that `SmallRng` is cheap to initialize and fast, but it may generate
/// low-quality random numbers, and reproducibility is not guaranteed. See its
/// documentation for information. You can select a different RNG with
/// [`.random_using()`](#tymethod.random_using).
pub trait RandomExt<S, A, D>
where
    S: RawData<Elem = A>,
    D: Dimension,
{
    /// Create an array with shape `dim` with elements drawn from
    /// `distribution` using the default RNG.
    ///
    /// ***Panics*** if creation of the RNG fails or if the number of elements
    /// overflows usize.
    ///
    /// ```
    /// use ndarray::Array;
    /// use ndarray_rand::RandomExt;
    /// use ndarray_rand::rand_distr::Uniform;
    ///
    /// # fn main() {
    /// let a = Array::random((2, 5), Uniform::new(0., 10.));
    /// println!("{:8.4}", a);
    /// // Example Output:
    /// // [[  8.6900,   6.9824,   3.8922,   6.5861,   2.4890],
    /// //  [  0.0914,   5.5186,   5.8135,   5.2361,   3.1879]]
    /// # }
    fn random<Sh, IdS>(shape: Sh, distribution: IdS) -> ArrayBase<S, D>
    where
        IdS: Distribution<S::Elem>,
        S: DataOwned<Elem = A>,
        Sh: ShapeBuilder<Dim = D>;

    /// Create an array with shape `dim` with elements drawn from
    /// `distribution`, using a specific Rng `rng`.
    ///
    /// ***Panics*** if the number of elements overflows usize.
    ///
    /// ```
    /// use ndarray::Array;
    /// use ndarray_rand::RandomExt;
    /// use ndarray_rand::rand::SeedableRng;
    /// use ndarray_rand::rand_distr::Uniform;
    /// use rand_isaac::isaac64::Isaac64Rng;
    ///
    /// # fn main() {
    /// // Get a seeded random number generator for reproducibility (Isaac64 algorithm)
    /// let seed = 42;
    /// let mut rng = Isaac64Rng::seed_from_u64(seed);
    ///
    /// // Generate a random array using `rng`
    /// let a = Array::random_using((2, 5), Uniform::new(0., 10.), &mut rng);
    /// println!("{:8.4}", a);
    /// // Example Output:
    /// // [[  8.6900,   6.9824,   3.8922,   6.5861,   2.4890],
    /// //  [  0.0914,   5.5186,   5.8135,   5.2361,   3.1879]]
    /// # }
    fn random_using<Sh, IdS, R>(shape: Sh, distribution: IdS, rng: &mut R) -> ArrayBase<S, D>
    where
        IdS: Distribution<S::Elem>,
        R: Rng + ?Sized,
        S: DataOwned<Elem = A>,
        Sh: ShapeBuilder<Dim = D>;

    /// Sample `n_samples` lanes slicing along `axis` using the default RNG.
    ///
    /// If `strategy==SamplingStrategy::WithoutReplacement`, each lane can only be sampled once.
    /// If `strategy==SamplingStrategy::WithReplacement`, each lane can be sampled multiple times.
    ///
    /// ***Panics*** when:
    /// - creation of the RNG fails;
    /// - `n_samples` is greater than the length of `axis` (if sampling without replacement);
    /// - length of `axis` is 0.
    ///
    /// ```
    /// use ndarray::{array, Axis};
    /// use ndarray_rand::{RandomExt, SamplingStrategy};
    ///
    /// # fn main() {
    /// let a = array![
    ///     [1., 2., 3.],
    ///     [4., 5., 6.],
    ///     [7., 8., 9.],
    ///     [10., 11., 12.],
    /// ];
    /// // Sample 2 rows, without replacement
    /// let sample_rows = a.sample_axis(Axis(0), 2, SamplingStrategy::WithoutReplacement);
    /// println!("{:?}", sample_rows);
    /// // Example Output: (1st and 3rd rows)
    /// // [
    /// //  [1., 2., 3.],
    /// //  [7., 8., 9.]
    /// // ]
    /// // Sample 2 columns, with replacement
    /// let sample_columns = a.sample_axis(Axis(1), 1, SamplingStrategy::WithReplacement);
    /// println!("{:?}", sample_columns);
    /// // Example Output: (2nd column, sampled twice)
    /// // [
    /// //  [2., 2.],
    /// //  [5., 5.],
    /// //  [8., 8.],
    /// //  [11., 11.]
    /// // ]
    /// # }
    /// ```
    fn sample_axis(&self, axis: Axis, n_samples: usize, strategy: SamplingStrategy) -> Array<A, D>
    where
        A: Copy,
        S: Data<Elem = A>,
        D: RemoveAxis;

    /// Sample `n_samples` lanes slicing along `axis` using the specified RNG `rng`.
    ///
    /// If `strategy==SamplingStrategy::WithoutReplacement`, each lane can only be sampled once.
    /// If `strategy==SamplingStrategy::WithReplacement`, each lane can be sampled multiple times.
    ///
    /// ***Panics*** when:
    /// - creation of the RNG fails;
    /// - `n_samples` is greater than the length of `axis` (if sampling without replacement);
    /// - length of `axis` is 0.
    ///
    /// ```
    /// use ndarray::{array, Axis};
    /// use ndarray_rand::{RandomExt, SamplingStrategy};
    /// use ndarray_rand::rand::SeedableRng;
    /// use rand_isaac::isaac64::Isaac64Rng;
    ///
    /// # fn main() {
    /// // Get a seeded random number generator for reproducibility (Isaac64 algorithm)
    /// let seed = 42;
    /// let mut rng = Isaac64Rng::seed_from_u64(seed);
    ///
    /// let a = array![
    ///     [1., 2., 3.],
    ///     [4., 5., 6.],
    ///     [7., 8., 9.],
    ///     [10., 11., 12.],
    /// ];
    /// // Sample 2 rows, without replacement
    /// let sample_rows = a.sample_axis_using(Axis(0), 2, SamplingStrategy::WithoutReplacement, &mut rng);
    /// println!("{:?}", sample_rows);
    /// // Example Output: (1st and 3rd rows)
    /// // [
    /// //  [1., 2., 3.],
    /// //  [7., 8., 9.]
    /// // ]
    ///
    /// // Sample 2 columns, with replacement
    /// let sample_columns = a.sample_axis_using(Axis(1), 1, SamplingStrategy::WithReplacement, &mut rng);
    /// println!("{:?}", sample_columns);
    /// // Example Output: (2nd column, sampled twice)
    /// // [
    /// //  [2., 2.],
    /// //  [5., 5.],
    /// //  [8., 8.],
    /// //  [11., 11.]
    /// // ]
    /// # }
    /// ```
    fn sample_axis_using<R>(
        &self,
        axis: Axis,
        n_samples: usize,
        strategy: SamplingStrategy,
        rng: &mut R,
    ) -> Array<A, D>
    where
        R: Rng + ?Sized,
        A: Copy,
        S: Data<Elem = A>,
        D: RemoveAxis;
}

impl<S, A, D> RandomExt<S, A, D> for ArrayBase<S, D>
where
    S: RawData<Elem = A>,
    D: Dimension,
{
    fn random<Sh, IdS>(shape: Sh, dist: IdS) -> ArrayBase<S, D>
    where
        IdS: Distribution<S::Elem>,
        S: DataOwned<Elem = A>,
        Sh: ShapeBuilder<Dim = D>,
    {
        Self::random_using(shape, dist, &mut get_rng())
    }

    fn random_using<Sh, IdS, R>(shape: Sh, dist: IdS, rng: &mut R) -> ArrayBase<S, D>
    where
        IdS: Distribution<S::Elem>,
        R: Rng + ?Sized,
        S: DataOwned<Elem = A>,
        Sh: ShapeBuilder<Dim = D>,
    {
        Self::from_shape_simple_fn(shape, move || dist.sample(rng))
    }

    fn sample_axis(&self, axis: Axis, n_samples: usize, strategy: SamplingStrategy) -> Array<A, D>
    where
        A: Copy,
        S: Data<Elem = A>,
        D: RemoveAxis,
    {
        self.sample_axis_using(axis, n_samples, strategy, &mut get_rng())
    }

    fn sample_axis_using<R>(
        &self,
        axis: Axis,
        n_samples: usize,
        strategy: SamplingStrategy,
        rng: &mut R,
    ) -> Array<A, D>
    where
        R: Rng + ?Sized,
        A: Copy,
        S: Data<Elem = A>,
        D: RemoveAxis,
    {
        let indices: Vec<_> = match strategy {
            SamplingStrategy::WithReplacement => {
                let distribution = Uniform::from(0..self.len_of(axis));
                (0..n_samples).map(|_| distribution.sample(rng)).collect()
            }
            SamplingStrategy::WithoutReplacement => {
                index::sample(rng, self.len_of(axis), n_samples).into_vec()
            }
        };
        self.select(axis, &indices)
    }
}

/// Used as parameter in [`sample_axis`] and [`sample_axis_using`] to determine
/// if lanes from the original array should only be sampled once (*without replacement*) or
/// multiple times (*with replacement*).
///
/// [`sample_axis`]: trait.RandomExt.html#tymethod.sample_axis
/// [`sample_axis_using`]: trait.RandomExt.html#tymethod.sample_axis_using
#[derive(Debug, Clone)]
pub enum SamplingStrategy {
    WithReplacement,
    WithoutReplacement,
}

// `Arbitrary` enables `quickcheck` to generate random `SamplingStrategy` values for testing.
#[cfg(feature = "quickcheck")]
impl Arbitrary for SamplingStrategy {
    fn arbitrary<G: Gen>(g: &mut G) -> Self {
        if bool::arbitrary(g) {
            SamplingStrategy::WithReplacement
        } else {
            SamplingStrategy::WithoutReplacement
        }
    }
}

fn get_rng() -> SmallRng {
    SmallRng::from_rng(thread_rng()).expect("create SmallRng from thread_rng failed")
}

/// A wrapper type that allows casting f64 distributions to f32
///
/// ```
/// use ndarray::Array;
/// use ndarray_rand::{RandomExt, F32};
/// use ndarray_rand::rand_distr::Normal;
///
/// # fn main() {
/// let distribution_f64 = Normal::new(0., 1.).expect("Failed to create normal distribution");
/// let a = Array::random((2, 5), F32(distribution_f64));
/// println!("{:8.4}", a);
/// // Example Output:
/// // [[ -0.6910,   1.1730,   1.0902,  -0.4092,  -1.7340],
/// //  [ -0.6810,   0.1678,  -0.9487,   0.3150,   1.2981]]
/// # }
#[derive(Copy, Clone, Debug)]
#[deprecated(since="0.14.0", note="Redundant with rand 0.8")]
pub struct F32<S>(pub S);

#[allow(deprecated)]
impl<S> Distribution<f32> for F32<S>
where
    S: Distribution<f64>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f32 {
        self.0.sample(rng) as f32
    }
}