Struct ndarray_rand::rand_distr::Gamma [−][src]
The Gamma distribution Gamma(shape, scale)
distribution.
The density function of this distribution is
f(x) = x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k)
where Γ
is the Gamma function, k
is the shape and θ
is the
scale and both k
and θ
are strictly positive.
The algorithm used is that described by Marsaglia & Tsang 20001,
falling back to directly sampling from an Exponential for shape == 1
, and using the boosting technique described in that paper for
shape < 1
.
Example
use rand_distr::{Distribution, Gamma}; let gamma = Gamma::new(2.0, 5.0).unwrap(); let v = gamma.sample(&mut rand::thread_rng()); println!("{} is from a Gamma(2, 5) distribution", v);
George Marsaglia and Wai Wan Tsang. 2000. “A Simple Method for Generating Gamma Variables” ACM Trans. Math. Softw. 26, 3 (September 2000), 363-372. DOI:10.1145/358407.358414 ↩
Implementations
impl<F> Gamma<F> where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
[src]
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
pub fn new(shape: F, scale: F) -> Result<Gamma<F>, Error>
[src]
Construct an object representing the Gamma(shape, scale)
distribution.
Trait Implementations
impl<F> Clone for Gamma<F> where
F: Clone + Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
[src]
F: Clone + Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
impl<F> Copy for Gamma<F> where
F: Copy + Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
[src]
F: Copy + Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
impl<F> Debug for Gamma<F> where
F: Debug + Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
[src]
F: Debug + Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
impl<F> Distribution<F> for Gamma<F> where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
[src]
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
Auto Trait Implementations
impl<F> RefUnwindSafe for Gamma<F> where
F: RefUnwindSafe,
F: RefUnwindSafe,
impl<F> Send for Gamma<F> where
F: Send,
F: Send,
impl<F> Sync for Gamma<F> where
F: Sync,
F: Sync,
impl<F> Unpin for Gamma<F> where
F: Unpin,
F: Unpin,
impl<F> UnwindSafe for Gamma<F> where
F: UnwindSafe,
F: UnwindSafe,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,