Struct ndarray_rand::rand_distr::LogNormal[][src]

pub struct LogNormal<F> where
    F: Float,
    StandardNormal: Distribution<F>, 
{ /* fields omitted */ }

The log-normal distribution ln N(mean, std_dev**2).

If X is log-normal distributed, then ln(X) is N(mean, std_dev**2) distributed.

Example

use rand_distr::{LogNormal, Distribution};

// mean 2, standard deviation 3
let log_normal = LogNormal::new(2.0, 3.0).unwrap();
let v = log_normal.sample(&mut rand::thread_rng());
println!("{} is from an ln N(2, 9) distribution", v)

Implementations

impl<F> LogNormal<F> where
    F: Float,
    StandardNormal: Distribution<F>, 
[src]

pub fn new(mu: F, sigma: F) -> Result<LogNormal<F>, Error>[src]

Construct, from (log-space) mean and standard deviation

Parameters are the “standard” log-space measures (these are the mean and standard deviation of the logarithm of samples):

  • mu (μ, unrestricted) is the mean of the underlying distribution
  • sigma (σ, must be finite) is the standard deviation of the underlying Normal distribution

pub fn from_mean_cv(mean: F, cv: F) -> Result<LogNormal<F>, Error>[src]

Construct, from (linear-space) mean and coefficient of variation

Parameters are linear-space measures:

  • mean (μ > 0) is the (real) mean of the distribution
  • coefficient of variation (cv = σ / μ, requiring cv ≥ 0) is a standardized measure of dispersion

As a special exception, μ = 0, cv = 0 is allowed (samples are -inf).

pub fn from_zscore(&self, zscore: F) -> F[src]

Sample from a z-score

This may be useful for generating correlated samples x1 and x2 from two different distributions, as follows.

let mut rng = thread_rng();
let z = StandardNormal.sample(&mut rng);
let x1 = LogNormal::from_mean_cv(3.0, 1.0).unwrap().from_zscore(z);
let x2 = LogNormal::from_mean_cv(2.0, 4.0).unwrap().from_zscore(z);

Trait Implementations

impl<F> Clone for LogNormal<F> where
    F: Clone + Float,
    StandardNormal: Distribution<F>, 
[src]

impl<F> Copy for LogNormal<F> where
    F: Copy + Float,
    StandardNormal: Distribution<F>, 
[src]

impl<F> Debug for LogNormal<F> where
    F: Debug + Float,
    StandardNormal: Distribution<F>, 
[src]

impl<F> Distribution<F> for LogNormal<F> where
    F: Float,
    StandardNormal: Distribution<F>, 
[src]

Auto Trait Implementations

impl<F> RefUnwindSafe for LogNormal<F> where
    F: RefUnwindSafe

impl<F> Send for LogNormal<F> where
    F: Send

impl<F> Sync for LogNormal<F> where
    F: Sync

impl<F> Unpin for LogNormal<F> where
    F: Unpin

impl<F> UnwindSafe for LogNormal<F> where
    F: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,