1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
// Copyright 2016-2019 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Constructors for randomized arrays: `rand` integration for `ndarray`.
//!
//! See **[`RandomExt`]** for usage examples.
//!
//! ## Note
//!
//! `ndarray-rand` depends on [`rand` 0.8][rand].
//!
//! [`rand`][rand] and [`rand_distr`][rand_distr]
//! are re-exported as sub-modules, [`ndarray_rand::rand`](rand)
//! and [`ndarray_rand::rand_distr`](rand_distr) respectively.
//! You can use these submodules for guaranteed version compatibility or
//! convenience.
//!
//! [rand]: https://docs.rs/rand/0.8
//! [rand_distr]: https://docs.rs/rand_distr/0.4
//!
//! If you want to use a random number generator or distribution from another crate
//! with `ndarray-rand`, you need to make sure that the other crate also depends on the
//! same version of `rand`. Otherwise, the compiler will return errors saying
//! that the items are not compatible (e.g. that a type doesn't implement a
//! necessary trait).
use crate::rand::distributions::{Distribution, Uniform};
use crate::rand::rngs::SmallRng;
use crate::rand::seq::index;
use crate::rand::{thread_rng, Rng, SeedableRng};
use ndarray::{Array, Axis, RemoveAxis, ShapeBuilder};
use ndarray::{ArrayBase, Data, DataOwned, Dimension, RawData};
#[cfg(feature = "quickcheck")]
use quickcheck::{Arbitrary, Gen};
/// `rand`, re-exported for convenience and version-compatibility.
pub mod rand
{
pub use rand::*;
}
/// `rand-distr`, re-exported for convenience and version-compatibility.
pub mod rand_distr
{
pub use rand_distr::*;
}
/// Constructors for n-dimensional arrays with random elements.
///
/// This trait extends ndarray’s `ArrayBase` and can not be implemented
/// for other types.
///
/// The default RNG is a fast automatically seeded rng (currently
/// [`rand::rngs::SmallRng`], seeded from [`rand::thread_rng`]).
///
/// Note that `SmallRng` is cheap to initialize and fast, but it may generate
/// low-quality random numbers, and reproducibility is not guaranteed. See its
/// documentation for information. You can select a different RNG with
/// [`.random_using()`](Self::random_using).
pub trait RandomExt<S, A, D>
where
S: RawData<Elem = A>,
D: Dimension,
{
/// Create an array with shape `dim` with elements drawn from
/// `distribution` using the default RNG.
///
/// ***Panics*** if creation of the RNG fails or if the number of elements
/// overflows usize.
///
/// ```
/// use ndarray::Array;
/// use ndarray_rand::RandomExt;
/// use ndarray_rand::rand_distr::Uniform;
///
/// # fn main() {
/// let a = Array::random((2, 5), Uniform::new(0., 10.));
/// println!("{:8.4}", a);
/// // Example Output:
/// // [[ 8.6900, 6.9824, 3.8922, 6.5861, 2.4890],
/// // [ 0.0914, 5.5186, 5.8135, 5.2361, 3.1879]]
/// # }
fn random<Sh, IdS>(shape: Sh, distribution: IdS) -> ArrayBase<S, D>
where
IdS: Distribution<S::Elem>,
S: DataOwned<Elem = A>,
Sh: ShapeBuilder<Dim = D>;
/// Create an array with shape `dim` with elements drawn from
/// `distribution`, using a specific Rng `rng`.
///
/// ***Panics*** if the number of elements overflows usize.
///
/// ```
/// use ndarray::Array;
/// use ndarray_rand::RandomExt;
/// use ndarray_rand::rand::SeedableRng;
/// use ndarray_rand::rand_distr::Uniform;
/// use rand_isaac::isaac64::Isaac64Rng;
///
/// # fn main() {
/// // Get a seeded random number generator for reproducibility (Isaac64 algorithm)
/// let seed = 42;
/// let mut rng = Isaac64Rng::seed_from_u64(seed);
///
/// // Generate a random array using `rng`
/// let a = Array::random_using((2, 5), Uniform::new(0., 10.), &mut rng);
/// println!("{:8.4}", a);
/// // Example Output:
/// // [[ 8.6900, 6.9824, 3.8922, 6.5861, 2.4890],
/// // [ 0.0914, 5.5186, 5.8135, 5.2361, 3.1879]]
/// # }
fn random_using<Sh, IdS, R>(shape: Sh, distribution: IdS, rng: &mut R) -> ArrayBase<S, D>
where
IdS: Distribution<S::Elem>,
R: Rng + ?Sized,
S: DataOwned<Elem = A>,
Sh: ShapeBuilder<Dim = D>;
/// Sample `n_samples` lanes slicing along `axis` using the default RNG.
///
/// If `strategy==SamplingStrategy::WithoutReplacement`, each lane can only be sampled once.
/// If `strategy==SamplingStrategy::WithReplacement`, each lane can be sampled multiple times.
///
/// ***Panics*** when:
/// - creation of the RNG fails;
/// - `n_samples` is greater than the length of `axis` (if sampling without replacement);
/// - length of `axis` is 0.
///
/// ```
/// use ndarray::{array, Axis};
/// use ndarray_rand::{RandomExt, SamplingStrategy};
///
/// # fn main() {
/// let a = array![
/// [1., 2., 3.],
/// [4., 5., 6.],
/// [7., 8., 9.],
/// [10., 11., 12.],
/// ];
/// // Sample 2 rows, without replacement
/// let sample_rows = a.sample_axis(Axis(0), 2, SamplingStrategy::WithoutReplacement);
/// println!("{:?}", sample_rows);
/// // Example Output: (1st and 3rd rows)
/// // [
/// // [1., 2., 3.],
/// // [7., 8., 9.]
/// // ]
/// // Sample 2 columns, with replacement
/// let sample_columns = a.sample_axis(Axis(1), 1, SamplingStrategy::WithReplacement);
/// println!("{:?}", sample_columns);
/// // Example Output: (2nd column, sampled twice)
/// // [
/// // [2., 2.],
/// // [5., 5.],
/// // [8., 8.],
/// // [11., 11.]
/// // ]
/// # }
/// ```
fn sample_axis(&self, axis: Axis, n_samples: usize, strategy: SamplingStrategy) -> Array<A, D>
where
A: Copy,
S: Data<Elem = A>,
D: RemoveAxis;
/// Sample `n_samples` lanes slicing along `axis` using the specified RNG `rng`.
///
/// If `strategy==SamplingStrategy::WithoutReplacement`, each lane can only be sampled once.
/// If `strategy==SamplingStrategy::WithReplacement`, each lane can be sampled multiple times.
///
/// ***Panics*** when:
/// - creation of the RNG fails;
/// - `n_samples` is greater than the length of `axis` (if sampling without replacement);
/// - length of `axis` is 0.
///
/// ```
/// use ndarray::{array, Axis};
/// use ndarray_rand::{RandomExt, SamplingStrategy};
/// use ndarray_rand::rand::SeedableRng;
/// use rand_isaac::isaac64::Isaac64Rng;
///
/// # fn main() {
/// // Get a seeded random number generator for reproducibility (Isaac64 algorithm)
/// let seed = 42;
/// let mut rng = Isaac64Rng::seed_from_u64(seed);
///
/// let a = array![
/// [1., 2., 3.],
/// [4., 5., 6.],
/// [7., 8., 9.],
/// [10., 11., 12.],
/// ];
/// // Sample 2 rows, without replacement
/// let sample_rows = a.sample_axis_using(Axis(0), 2, SamplingStrategy::WithoutReplacement, &mut rng);
/// println!("{:?}", sample_rows);
/// // Example Output: (1st and 3rd rows)
/// // [
/// // [1., 2., 3.],
/// // [7., 8., 9.]
/// // ]
///
/// // Sample 2 columns, with replacement
/// let sample_columns = a.sample_axis_using(Axis(1), 1, SamplingStrategy::WithReplacement, &mut rng);
/// println!("{:?}", sample_columns);
/// // Example Output: (2nd column, sampled twice)
/// // [
/// // [2., 2.],
/// // [5., 5.],
/// // [8., 8.],
/// // [11., 11.]
/// // ]
/// # }
/// ```
fn sample_axis_using<R>(
&self, axis: Axis, n_samples: usize, strategy: SamplingStrategy, rng: &mut R,
) -> Array<A, D>
where
R: Rng + ?Sized,
A: Copy,
S: Data<Elem = A>,
D: RemoveAxis;
}
impl<S, A, D> RandomExt<S, A, D> for ArrayBase<S, D>
where
S: RawData<Elem = A>,
D: Dimension,
{
fn random<Sh, IdS>(shape: Sh, dist: IdS) -> ArrayBase<S, D>
where
IdS: Distribution<S::Elem>,
S: DataOwned<Elem = A>,
Sh: ShapeBuilder<Dim = D>,
{
Self::random_using(shape, dist, &mut get_rng())
}
fn random_using<Sh, IdS, R>(shape: Sh, dist: IdS, rng: &mut R) -> ArrayBase<S, D>
where
IdS: Distribution<S::Elem>,
R: Rng + ?Sized,
S: DataOwned<Elem = A>,
Sh: ShapeBuilder<Dim = D>,
{
Self::from_shape_simple_fn(shape, move || dist.sample(rng))
}
fn sample_axis(&self, axis: Axis, n_samples: usize, strategy: SamplingStrategy) -> Array<A, D>
where
A: Copy,
S: Data<Elem = A>,
D: RemoveAxis,
{
self.sample_axis_using(axis, n_samples, strategy, &mut get_rng())
}
fn sample_axis_using<R>(&self, axis: Axis, n_samples: usize, strategy: SamplingStrategy, rng: &mut R) -> Array<A, D>
where
R: Rng + ?Sized,
A: Copy,
S: Data<Elem = A>,
D: RemoveAxis,
{
let indices: Vec<_> = match strategy {
SamplingStrategy::WithReplacement => {
let distribution = Uniform::from(0..self.len_of(axis));
(0..n_samples).map(|_| distribution.sample(rng)).collect()
}
SamplingStrategy::WithoutReplacement => index::sample(rng, self.len_of(axis), n_samples).into_vec(),
};
self.select(axis, &indices)
}
}
/// Used as parameter in [`sample_axis`] and [`sample_axis_using`] to determine
/// if lanes from the original array should only be sampled once (*without replacement*) or
/// multiple times (*with replacement*).
///
/// [`sample_axis`]: RandomExt::sample_axis
/// [`sample_axis_using`]: RandomExt::sample_axis_using
#[derive(Debug, Clone)]
pub enum SamplingStrategy
{
WithReplacement,
WithoutReplacement,
}
// `Arbitrary` enables `quickcheck` to generate random `SamplingStrategy` values for testing.
#[cfg(feature = "quickcheck")]
impl Arbitrary for SamplingStrategy
{
fn arbitrary(g: &mut Gen) -> Self
{
if bool::arbitrary(g) {
SamplingStrategy::WithReplacement
} else {
SamplingStrategy::WithoutReplacement
}
}
}
fn get_rng() -> SmallRng
{
SmallRng::from_rng(thread_rng()).expect("create SmallRng from thread_rng failed")
}