1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
#![warn(missing_docs, clippy::all, clippy::pedantic)]
use super::{bins::Bins, errors::BinsBuildError, strategies::BinsBuildingStrategy};
use itertools::izip;
use ndarray::{ArrayBase, Axis, Data, Ix1, Ix2};
use std::ops::Range;
/// An orthogonal partition of a rectangular region in an *n*-dimensional space, e.g.
/// [*a*<sub>0</sub>, *b*<sub>0</sub>) × ⋯ × [*a*<sub>*n*−1</sub>, *b*<sub>*n*−1</sub>),
/// represented as a collection of rectangular *n*-dimensional bins.
///
/// The grid is **solely determined by the Cartesian product of its projections** on each coordinate
/// axis. Therefore, each element in the product set should correspond to a sub-region in the grid.
///
/// For example, this partition can be represented as a `Grid` struct:
///
/// ```text
///
/// g +---+-------+---+
/// | 3 | 4 | 5 |
/// f +---+-------+---+
/// | | | |
/// | 0 | 1 | 2 |
/// | | | |
/// e +---+-------+---+
/// a b c d
///
/// R0: [a, b) × [e, f)
/// R1: [b, c) × [e, f)
/// R2: [c, d) × [e, f)
/// R3: [a, b) × [f, g)
/// R4: [b, d) × [f, g)
/// R5: [c, d) × [f, g)
/// Grid: { [a, b), [b, c), [c, d) } × { [e, f), [f, g) } == { R0, R1, R2, R3, R4, R5 }
/// ```
///
/// while the next one can't:
///
/// ```text
/// g +---+-----+---+
/// | | 2 | 3 |
/// (f) | +-----+---+
/// | 0 | |
/// | | 1 |
/// | | |
/// e +---+-----+---+
/// a b c d
///
/// R0: [a, b) × [e, g)
/// R1: [b, d) × [e, f)
/// R2: [b, c) × [f, g)
/// R3: [c, d) × [f, g)
/// // 'f', as long as 'R1', 'R2', or 'R3', doesn't appear on LHS
/// // [b, c) × [e, g), [c, d) × [e, g) doesn't appear on RHS
/// Grid: { [a, b), [b, c), [c, d) } × { [e, g) } != { R0, R1, R2, R3 }
/// ```
///
/// # Examples
///
/// Basic usage, building a `Grid` via [`GridBuilder`], with optimal grid layout determined by
/// a given [`strategy`], and generating a [`histogram`]:
///
/// ```
/// use ndarray::{Array, array};
/// use ndarray_stats::{
/// histogram::{strategies::Auto, Bins, Edges, Grid, GridBuilder},
/// HistogramExt,
/// };
///
/// // 1-dimensional observations, as a (n_observations, n_dimension) 2-d matrix
/// let observations = Array::from_shape_vec(
/// (12, 1),
/// vec![1, 4, 5, 2, 100, 20, 50, 65, 27, 40, 45, 23],
/// ).unwrap();
///
/// // The optimal grid layout is inferred from the data, given a chosen strategy, Auto in this case
/// let grid = GridBuilder::<Auto<usize>>::from_array(&observations).unwrap().build();
///
/// let histogram = observations.histogram(grid);
///
/// let histogram_matrix = histogram.counts();
/// // Bins are left-closed, right-open!
/// let expected = array![4, 3, 3, 1, 0, 1];
/// assert_eq!(histogram_matrix, expected.into_dyn());
/// ```
///
/// [`histogram`]: trait.HistogramExt.html
/// [`GridBuilder`]: struct.GridBuilder.html
/// [`strategy`]: strategies/index.html
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Grid<A: Ord> {
projections: Vec<Bins<A>>,
}
impl<A: Ord> From<Vec<Bins<A>>> for Grid<A> {
/// Converts a `Vec<Bins<A>>` into a `Grid<A>`, consuming the vector of bins.
///
/// The `i`-th element in `Vec<Bins<A>>` represents the projection of the bin grid onto the
/// `i`-th axis.
///
/// Alternatively, a `Grid` can be built directly from data using a [`GridBuilder`].
///
/// [`GridBuilder`]: struct.GridBuilder.html
fn from(projections: Vec<Bins<A>>) -> Self {
Grid { projections }
}
}
impl<A: Ord> Grid<A> {
/// Returns the number of dimensions of the region partitioned by the grid.
///
/// # Examples
///
/// ```
/// use ndarray_stats::histogram::{Edges, Bins, Grid};
///
/// let edges = Edges::from(vec![0, 1]);
/// let bins = Bins::new(edges);
/// let square_grid = Grid::from(vec![bins.clone(), bins.clone()]);
///
/// assert_eq!(square_grid.ndim(), 2usize)
/// ```
#[must_use]
pub fn ndim(&self) -> usize {
self.projections.len()
}
/// Returns the numbers of bins along each coordinate axis.
///
/// # Examples
///
/// ```
/// use ndarray_stats::histogram::{Edges, Bins, Grid};
///
/// let edges_x = Edges::from(vec![0, 1]);
/// let edges_y = Edges::from(vec![-1, 0, 1]);
/// let bins_x = Bins::new(edges_x);
/// let bins_y = Bins::new(edges_y);
/// let square_grid = Grid::from(vec![bins_x, bins_y]);
///
/// assert_eq!(square_grid.shape(), vec![1usize, 2usize]);
/// ```
#[must_use]
pub fn shape(&self) -> Vec<usize> {
self.projections.iter().map(Bins::len).collect()
}
/// Returns the grid projections on each coordinate axis as a slice of immutable references.
#[must_use]
pub fn projections(&self) -> &[Bins<A>] {
&self.projections
}
/// Returns an `n-dimensional` index, of bins along each axis that contains the point, if one
/// exists.
///
/// Returns `None` if the point is outside the grid.
///
/// # Panics
///
/// Panics if dimensionality of the point doesn't equal the grid's.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use ndarray::array;
/// use ndarray_stats::histogram::{Edges, Bins, Grid};
/// use noisy_float::types::n64;
///
/// let edges = Edges::from(vec![n64(-1.), n64(0.), n64(1.)]);
/// let bins = Bins::new(edges);
/// let square_grid = Grid::from(vec![bins.clone(), bins.clone()]);
///
/// // (0., -0.7) falls in 1st and 0th bin respectively
/// assert_eq!(
/// square_grid.index_of(&array![n64(0.), n64(-0.7)]),
/// Some(vec![1, 0]),
/// );
/// // Returns `None`, as `1.` is outside the grid since bins are right-open
/// assert_eq!(
/// square_grid.index_of(&array![n64(0.), n64(1.)]),
/// None,
/// );
/// ```
///
/// A panic upon dimensionality mismatch:
///
/// ```should_panic
/// # use ndarray::array;
/// # use ndarray_stats::histogram::{Edges, Bins, Grid};
/// # use noisy_float::types::n64;
/// # let edges = Edges::from(vec![n64(-1.), n64(0.), n64(1.)]);
/// # let bins = Bins::new(edges);
/// # let square_grid = Grid::from(vec![bins.clone(), bins.clone()]);
/// // the point has 3 dimensions, the grid expected 2 dimensions
/// assert_eq!(
/// square_grid.index_of(&array![n64(0.), n64(-0.7), n64(0.5)]),
/// Some(vec![1, 0, 1]),
/// );
/// ```
pub fn index_of<S>(&self, point: &ArrayBase<S, Ix1>) -> Option<Vec<usize>>
where
S: Data<Elem = A>,
{
assert_eq!(
point.len(),
self.ndim(),
"Dimension mismatch: the point has {:?} dimensions, the grid \
expected {:?} dimensions.",
point.len(),
self.ndim()
);
point
.iter()
.zip(self.projections.iter())
.map(|(v, e)| e.index_of(v))
.collect()
}
}
impl<A: Ord + Clone> Grid<A> {
/// Given an `n`-dimensional index, `i = (i_0, ..., i_{n-1})`, returns an `n`-dimensional bin,
/// `I_{i_0} x ... x I_{i_{n-1}}`, where `I_{i_j}` is the `i_j`-th interval on the `j`-th
/// projection of the grid on the coordinate axes.
///
/// # Panics
///
/// Panics if at least one in the index, `(i_0, ..., i_{n-1})`, is out of bounds on the
/// corresponding coordinate axis, i.e. if there exists `j` s.t.
/// `i_j >= self.projections[j].len()`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use ndarray::array;
/// use ndarray_stats::histogram::{Edges, Bins, Grid};
///
/// let edges_x = Edges::from(vec![0, 1]);
/// let edges_y = Edges::from(vec![2, 3, 4]);
/// let bins_x = Bins::new(edges_x);
/// let bins_y = Bins::new(edges_y);
/// let square_grid = Grid::from(vec![bins_x, bins_y]);
///
/// // Query the 0-th bin on x-axis, and 1-st bin on y-axis
/// assert_eq!(
/// square_grid.index(&[0, 1]),
/// vec![0..1, 3..4],
/// );
/// ```
///
/// A panic upon out-of-bounds:
///
/// ```should_panic
/// # use ndarray::array;
/// # use ndarray_stats::histogram::{Edges, Bins, Grid};
/// # let edges_x = Edges::from(vec![0, 1]);
/// # let edges_y = Edges::from(vec![2, 3, 4]);
/// # let bins_x = Bins::new(edges_x);
/// # let bins_y = Bins::new(edges_y);
/// # let square_grid = Grid::from(vec![bins_x, bins_y]);
/// // out-of-bound on y-axis
/// assert_eq!(
/// square_grid.index(&[0, 2]),
/// vec![0..1, 3..4],
/// );
/// ```
#[must_use]
pub fn index(&self, index: &[usize]) -> Vec<Range<A>> {
assert_eq!(
index.len(),
self.ndim(),
"Dimension mismatch: the index has {0:?} dimensions, the grid \
expected {1:?} dimensions.",
index.len(),
self.ndim()
);
izip!(&self.projections, index)
.map(|(bins, &i)| bins.index(i))
.collect()
}
}
/// A builder used to create [`Grid`] instances for [`histogram`] computations.
///
/// # Examples
///
/// Basic usage, creating a `Grid` with some observations and a given [`strategy`]:
///
/// ```
/// use ndarray::Array;
/// use ndarray_stats::histogram::{strategies::Auto, Bins, Edges, Grid, GridBuilder};
///
/// // 1-dimensional observations, as a (n_observations, n_dimension) 2-d matrix
/// let observations = Array::from_shape_vec(
/// (12, 1),
/// vec![1, 4, 5, 2, 100, 20, 50, 65, 27, 40, 45, 23],
/// ).unwrap();
///
/// // The optimal grid layout is inferred from the data, given a chosen strategy, Auto in this case
/// let grid = GridBuilder::<Auto<usize>>::from_array(&observations).unwrap().build();
/// // Equivalently, build a Grid directly
/// let expected_grid = Grid::from(vec![Bins::new(Edges::from(vec![1, 20, 39, 58, 77, 96, 115]))]);
///
/// assert_eq!(grid, expected_grid);
/// ```
///
/// [`Grid`]: struct.Grid.html
/// [`histogram`]: trait.HistogramExt.html
/// [`strategy`]: strategies/index.html
#[allow(clippy::module_name_repetitions)]
pub struct GridBuilder<B: BinsBuildingStrategy> {
bin_builders: Vec<B>,
}
impl<A, B> GridBuilder<B>
where
A: Ord,
B: BinsBuildingStrategy<Elem = A>,
{
/// Returns a `GridBuilder` for building a [`Grid`] with a given [`strategy`] and some
/// observations in a 2-dimensionalarray with shape `(n_observations, n_dimension)`.
///
/// # Errors
///
/// It returns [`BinsBuildError`] if it is not possible to build a [`Grid`] given
/// the observed data according to the chosen [`strategy`].
///
/// # Examples
///
/// See [Trait-level examples] for basic usage.
///
/// [`Grid`]: struct.Grid.html
/// [`strategy`]: strategies/index.html
/// [`BinsBuildError`]: errors/enum.BinsBuildError.html
/// [Trait-level examples]: struct.GridBuilder.html#examples
pub fn from_array<S>(array: &ArrayBase<S, Ix2>) -> Result<Self, BinsBuildError>
where
S: Data<Elem = A>,
{
let bin_builders = array
.axis_iter(Axis(1))
.map(|data| B::from_array(&data))
.collect::<Result<Vec<B>, BinsBuildError>>()?;
Ok(Self { bin_builders })
}
/// Returns a [`Grid`] instance, with building parameters infered in [`from_array`], according
/// to the specified [`strategy`] and observations provided.
///
/// # Examples
///
/// See [Trait-level examples] for basic usage.
///
/// [`Grid`]: struct.Grid.html
/// [`strategy`]: strategies/index.html
/// [`from_array`]: #method.from_array.html
#[must_use]
pub fn build(&self) -> Grid<A> {
let projections: Vec<_> = self.bin_builders.iter().map(|b| b.build()).collect();
Grid::from(projections)
}
}