1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
//! Summary statistics (e.g. mean, variance, etc.).
use crate::errors::{EmptyInput, MultiInputError};
use ndarray::{Array, ArrayBase, Axis, Data, Dimension, Ix1, RemoveAxis};
use num_traits::{Float, FromPrimitive, Zero};
use std::ops::{Add, AddAssign, Div, Mul};

/// Extension trait for `ArrayBase` providing methods
/// to compute several summary statistics (e.g. mean, variance, etc.).
pub trait SummaryStatisticsExt<A, S, D>
where
    S: Data<Elem = A>,
    D: Dimension,
{
    /// Returns the [`arithmetic mean`] x̅ of all elements in the array:
    ///
    /// ```text
    ///     1   n
    /// x̅ = ―   ∑ xᵢ
    ///     n  i=1
    /// ```
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements in the array.
    ///
    /// [`arithmetic mean`]: https://en.wikipedia.org/wiki/Arithmetic_mean
    fn mean(&self) -> Result<A, EmptyInput>
    where
        A: Clone + FromPrimitive + Add<Output = A> + Div<Output = A> + Zero;

    /// Returns the [`arithmetic weighted mean`] x̅ of all elements in the array. Use `weighted_sum`
    /// if the `weights` are normalized (they sum up to 1.0).
    ///
    /// ```text
    ///       n
    ///       ∑ wᵢxᵢ
    ///      i=1
    /// x̅ = ―――――――――
    ///        n
    ///        ∑ wᵢ
    ///       i=1
    /// ```
    ///
    /// **Panics** if division by zero panics for type A.
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::EmptyInput` if `self` is empty
    /// * `MultiInputError::ShapeMismatch` if `self` and `weights` don't have the same shape
    ///
    /// [`arithmetic weighted mean`] https://en.wikipedia.org/wiki/Weighted_arithmetic_mean
    fn weighted_mean(&self, weights: &Self) -> Result<A, MultiInputError>
    where
        A: Copy + Div<Output = A> + Mul<Output = A> + Zero;

    /// Returns the weighted sum of all elements in the array, that is, the dot product of the
    /// arrays `self` and `weights`. Equivalent to `weighted_mean` if the `weights` are normalized.
    ///
    /// ```text
    ///      n
    /// x̅ =  ∑ wᵢxᵢ
    ///     i=1
    /// ```
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::ShapeMismatch` if `self` and `weights` don't have the same shape
    fn weighted_sum(&self, weights: &Self) -> Result<A, MultiInputError>
    where
        A: Copy + Mul<Output = A> + Zero;

    /// Returns the [`arithmetic weighted mean`] x̅ along `axis`. Use `weighted_mean_axis ` if the
    /// `weights` are normalized.
    ///
    /// ```text
    ///       n
    ///       ∑ wᵢxᵢ
    ///      i=1
    /// x̅ = ―――――――――
    ///        n
    ///        ∑ wᵢ
    ///       i=1
    /// ```
    ///
    /// **Panics** if `axis` is out of bounds.
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::EmptyInput` if `self` is empty
    /// * `MultiInputError::ShapeMismatch` if `self` length along axis is not equal to `weights` length
    ///
    /// [`arithmetic weighted mean`] https://en.wikipedia.org/wiki/Weighted_arithmetic_mean
    fn weighted_mean_axis(
        &self,
        axis: Axis,
        weights: &ArrayBase<S, Ix1>,
    ) -> Result<Array<A, D::Smaller>, MultiInputError>
    where
        A: Copy + Div<Output = A> + Mul<Output = A> + Zero,
        D: RemoveAxis;

    /// Returns the weighted sum along `axis`, that is, the dot product of `weights` and each lane
    /// of `self` along `axis`. Equivalent to `weighted_mean_axis` if the `weights` are normalized.
    ///
    /// ```text
    ///      n
    /// x̅ =  ∑ wᵢxᵢ
    ///     i=1
    /// ```
    ///
    /// **Panics** if `axis` is out of bounds.
    ///
    /// The following **errors** may be returned
    ///
    /// * `MultiInputError::ShapeMismatch` if `self` and `weights` don't have the same shape
    fn weighted_sum_axis(
        &self,
        axis: Axis,
        weights: &ArrayBase<S, Ix1>,
    ) -> Result<Array<A, D::Smaller>, MultiInputError>
    where
        A: Copy + Mul<Output = A> + Zero,
        D: RemoveAxis;

    /// Returns the [`harmonic mean`] `HM(X)` of all elements in the array:
    ///
    /// ```text
    ///           ⎛ n     ⎞⁻¹
    /// HM(X) = n ⎜ ∑ xᵢ⁻¹⎟
    ///           ⎝i=1    ⎠
    /// ```
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements in the array.
    ///
    /// [`harmonic mean`]: https://en.wikipedia.org/wiki/Harmonic_mean
    fn harmonic_mean(&self) -> Result<A, EmptyInput>
    where
        A: Float + FromPrimitive;

    /// Returns the [`geometric mean`] `GM(X)` of all elements in the array:
    ///
    /// ```text
    ///         ⎛ n   ⎞¹⁄ₙ
    /// GM(X) = ⎜ ∏ xᵢ⎟
    ///         ⎝i=1  ⎠
    /// ```
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements in the array.
    ///
    /// [`geometric mean`]: https://en.wikipedia.org/wiki/Geometric_mean
    fn geometric_mean(&self) -> Result<A, EmptyInput>
    where
        A: Float + FromPrimitive;

    /// Return weighted variance of all elements in the array.
    ///
    /// The weighted variance is computed using the [`West, D. H. D.`] incremental algorithm.
    /// Equivalent to `var_axis` if the `weights` are normalized.
    ///
    /// The parameter `ddof` specifies the "delta degrees of freedom". For example, to calculate the
    /// population variance, use `ddof = 0`, or to calculate the sample variance, use `ddof = 1`.
    ///
    /// **Panics** if `ddof` is less than zero or greater than one, or if `axis` is out of bounds,
    /// or if `A::from_usize()` fails for zero or one.
    ///
    /// [`West, D. H. D.`]: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Weighted_incremental_algorithm
    fn weighted_var(&self, weights: &Self, ddof: A) -> Result<A, MultiInputError>
    where
        A: AddAssign + Float + FromPrimitive;

    /// Return weighted standard deviation of all elements in the array.
    ///
    /// The weighted standard deviation is computed using the [`West, D. H. D.`] incremental
    /// algorithm. Equivalent to `var_axis` if the `weights` are normalized.
    ///
    /// The parameter `ddof` specifies the "delta degrees of freedom". For example, to calculate the
    /// population variance, use `ddof = 0`, or to calculate the sample variance, use `ddof = 1`.
    ///
    /// **Panics** if `ddof` is less than zero or greater than one, or if `axis` is out of bounds,
    /// or if `A::from_usize()` fails for zero or one.
    ///
    /// [`West, D. H. D.`]: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Weighted_incremental_algorithm
    fn weighted_std(&self, weights: &Self, ddof: A) -> Result<A, MultiInputError>
    where
        A: AddAssign + Float + FromPrimitive;

    /// Return weighted variance along `axis`.
    ///
    /// The weighted variance is computed using the [`West, D. H. D.`] incremental algorithm.
    /// Equivalent to `var_axis` if the `weights` are normalized.
    ///
    /// The parameter `ddof` specifies the "delta degrees of freedom". For example, to calculate the
    /// population variance, use `ddof = 0`, or to calculate the sample variance, use `ddof = 1`.
    ///
    /// **Panics** if `ddof` is less than zero or greater than one, or if `axis` is out of bounds,
    /// or if `A::from_usize()` fails for zero or one.
    ///
    /// [`West, D. H. D.`]: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Weighted_incremental_algorithm
    fn weighted_var_axis(
        &self,
        axis: Axis,
        weights: &ArrayBase<S, Ix1>,
        ddof: A,
    ) -> Result<Array<A, D::Smaller>, MultiInputError>
    where
        A: AddAssign + Float + FromPrimitive,
        D: RemoveAxis;

    /// Return weighted standard deviation along `axis`.
    ///
    /// The weighted standard deviation is computed using the [`West, D. H. D.`] incremental
    /// algorithm. Equivalent to `var_axis` if the `weights` are normalized.
    ///
    /// The parameter `ddof` specifies the "delta degrees of freedom". For example, to calculate the
    /// population variance, use `ddof = 0`, or to calculate the sample variance, use `ddof = 1`.
    ///
    /// **Panics** if `ddof` is less than zero or greater than one, or if `axis` is out of bounds,
    /// or if `A::from_usize()` fails for zero or one.
    ///
    /// [`West, D. H. D.`]: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Weighted_incremental_algorithm
    fn weighted_std_axis(
        &self,
        axis: Axis,
        weights: &ArrayBase<S, Ix1>,
        ddof: A,
    ) -> Result<Array<A, D::Smaller>, MultiInputError>
    where
        A: AddAssign + Float + FromPrimitive,
        D: RemoveAxis;

    /// Returns the [kurtosis] `Kurt[X]` of all elements in the array:
    ///
    /// ```text
    /// Kurt[X] = μ₄ / σ⁴
    /// ```
    ///
    /// where μ₄ is the fourth central moment and σ is the standard deviation of
    /// the elements in the array.
    ///
    /// This is sometimes referred to as _Pearson's kurtosis_. Fisher's kurtosis can be
    /// computed by subtracting 3 from Pearson's kurtosis.
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements in the array.
    ///
    /// [kurtosis]: https://en.wikipedia.org/wiki/Kurtosis
    fn kurtosis(&self) -> Result<A, EmptyInput>
    where
        A: Float + FromPrimitive;

    /// Returns the [Pearson's moment coefficient of skewness] γ₁ of all elements in the array:
    ///
    /// ```text
    /// γ₁ = μ₃ / σ³
    /// ```
    ///
    /// where μ₃ is the third central moment and σ is the standard deviation of
    /// the elements in the array.
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements in the array.
    ///
    /// [Pearson's moment coefficient of skewness]: https://en.wikipedia.org/wiki/Skewness
    fn skewness(&self) -> Result<A, EmptyInput>
    where
        A: Float + FromPrimitive;

    /// Returns the *p*-th [central moment] of all elements in the array, μₚ:
    ///
    /// ```text
    ///      1  n
    /// μₚ = ―  ∑ (xᵢ-x̅)ᵖ
    ///      n i=1
    /// ```
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// The *p*-th central moment is computed using a corrected two-pass algorithm (see Section 3.5
    /// in [Pébay et al., 2016]). Complexity is *O(np)* when *n >> p*, *p > 1*.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements
    /// in the array or if `order` overflows `i32`.
    ///
    /// [central moment]: https://en.wikipedia.org/wiki/Central_moment
    /// [Pébay et al., 2016]: https://www.osti.gov/pages/servlets/purl/1427275
    fn central_moment(&self, order: u16) -> Result<A, EmptyInput>
    where
        A: Float + FromPrimitive;

    /// Returns the first *p* [central moments] of all elements in the array, see [central moment]
    /// for more details.
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// This method reuses the intermediate steps for the *k*-th moment to compute the *(k+1)*-th,
    /// being thus more efficient than repeated calls to [central moment] if the computation
    /// of central moments of multiple orders is required.
    ///
    /// **Panics** if `A::from_usize()` fails to convert the number of elements
    /// in the array or if `order` overflows `i32`.
    ///
    /// [central moments]: https://en.wikipedia.org/wiki/Central_moment
    /// [central moment]: #tymethod.central_moment
    fn central_moments(&self, order: u16) -> Result<Vec<A>, EmptyInput>
    where
        A: Float + FromPrimitive;

    private_decl! {}
}

mod means;