1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
use ndarray::prelude::*;
use ndarray::{s, Data, DataMut, RemoveAxis};
use noisy_float::types::{N32, N64};
use std::mem;

/// A number type that can have not-a-number values.
pub trait MaybeNan: Sized {
    /// A type that is guaranteed not to be a NaN value.
    type NotNan;

    /// Returns `true` if the value is a NaN value.
    fn is_nan(&self) -> bool;

    /// Tries to convert the value to `NotNan`.
    ///
    /// Returns `None` if the value is a NaN value.
    fn try_as_not_nan(&self) -> Option<&Self::NotNan>;

    /// Converts the value.
    ///
    /// If the value is `None`, a NaN value is returned.
    fn from_not_nan(_: Self::NotNan) -> Self;

    /// Converts the value.
    ///
    /// If the value is `None`, a NaN value is returned.
    fn from_not_nan_opt(_: Option<Self::NotNan>) -> Self;

    /// Converts the value.
    ///
    /// If the value is `None`, a NaN value is returned.
    fn from_not_nan_ref_opt(_: Option<&Self::NotNan>) -> &Self;

    /// Returns a view with the NaN values removed.
    ///
    /// This modifies the input view by moving elements as necessary. The final
    /// order of the elements is unspecified. However, this method is
    /// idempotent, and given the same input data, the result is always ordered
    /// the same way.
    fn remove_nan_mut(_: ArrayViewMut1<'_, Self>) -> ArrayViewMut1<'_, Self::NotNan>;
}

/// Returns a view with the NaN values removed.
///
/// This modifies the input view by moving elements as necessary.
fn remove_nan_mut<A: MaybeNan>(mut view: ArrayViewMut1<'_, A>) -> ArrayViewMut1<'_, A> {
    if view.is_empty() {
        return view.slice_move(s![..0]);
    }
    let mut i = 0;
    let mut j = view.len() - 1;
    loop {
        // At this point, `i == 0 || !view[i-1].is_nan()`
        // and `j == view.len() - 1 || view[j+1].is_nan()`.
        while i <= j && !view[i].is_nan() {
            i += 1;
        }
        // At this point, `view[i].is_nan() || i == j + 1`.
        while j > i && view[j].is_nan() {
            j -= 1;
        }
        // At this point, `!view[j].is_nan() || j == i`.
        if i >= j {
            return view.slice_move(s![..i]);
        } else {
            view.swap(i, j);
            i += 1;
            j -= 1;
        }
    }
}

/// Casts a view from one element type to another.
///
/// # Panics
///
/// Panics if `T` and `U` differ in size or alignment.
///
/// # Safety
///
/// The caller must ensure that qll elements in `view` are valid values for type `U`.
unsafe fn cast_view_mut<T, U>(mut view: ArrayViewMut1<'_, T>) -> ArrayViewMut1<'_, U> {
    assert_eq!(mem::size_of::<T>(), mem::size_of::<U>());
    assert_eq!(mem::align_of::<T>(), mem::align_of::<U>());
    let ptr: *mut U = view.as_mut_ptr().cast();
    let len: usize = view.len_of(Axis(0));
    let stride: isize = view.stride_of(Axis(0));
    if len <= 1 {
        // We can use a stride of `0` because the stride is irrelevant for the `len == 1` case.
        let stride = 0;
        ArrayViewMut1::from_shape_ptr([len].strides([stride]), ptr)
    } else if stride >= 0 {
        let stride = stride as usize;
        ArrayViewMut1::from_shape_ptr([len].strides([stride]), ptr)
    } else {
        // At this point, stride < 0. We have to construct the view by using the inverse of the
        // stride and then inverting the axis, since `ArrayViewMut::from_shape_ptr` requires the
        // stride to be nonnegative.
        let neg_stride = stride.checked_neg().unwrap() as usize;
        // This is safe because `ndarray` guarantees that it's safe to offset the
        // pointer anywhere in the array.
        let neg_ptr = ptr.offset((len - 1) as isize * stride);
        let mut v = ArrayViewMut1::from_shape_ptr([len].strides([neg_stride]), neg_ptr);
        v.invert_axis(Axis(0));
        v
    }
}

macro_rules! impl_maybenan_for_fxx {
    ($fxx:ident, $Nxx:ident) => {
        impl MaybeNan for $fxx {
            type NotNan = $Nxx;

            fn is_nan(&self) -> bool {
                $fxx::is_nan(*self)
            }

            fn try_as_not_nan(&self) -> Option<&$Nxx> {
                $Nxx::try_borrowed(self)
            }

            fn from_not_nan(value: $Nxx) -> $fxx {
                value.raw()
            }

            fn from_not_nan_opt(value: Option<$Nxx>) -> $fxx {
                match value {
                    None => ::std::$fxx::NAN,
                    Some(num) => num.raw(),
                }
            }

            fn from_not_nan_ref_opt(value: Option<&$Nxx>) -> &$fxx {
                match value {
                    None => &::std::$fxx::NAN,
                    Some(num) => num.as_ref(),
                }
            }

            fn remove_nan_mut(view: ArrayViewMut1<'_, $fxx>) -> ArrayViewMut1<'_, $Nxx> {
                let not_nan = remove_nan_mut(view);
                // This is safe because `remove_nan_mut` has removed the NaN values, and `$Nxx` is
                // a thin wrapper around `$fxx`.
                unsafe { cast_view_mut(not_nan) }
            }
        }
    };
}
impl_maybenan_for_fxx!(f32, N32);
impl_maybenan_for_fxx!(f64, N64);

macro_rules! impl_maybenan_for_opt_never_nan {
    ($ty:ty) => {
        impl MaybeNan for Option<$ty> {
            type NotNan = NotNone<$ty>;

            fn is_nan(&self) -> bool {
                self.is_none()
            }

            fn try_as_not_nan(&self) -> Option<&NotNone<$ty>> {
                if self.is_none() {
                    None
                } else {
                    // This is safe because we have checked for the `None`
                    // case, and `NotNone<$ty>` is a thin wrapper around `Option<$ty>`.
                    Some(unsafe { &*(self as *const Option<$ty> as *const NotNone<$ty>) })
                }
            }

            fn from_not_nan(value: NotNone<$ty>) -> Option<$ty> {
                value.into_inner()
            }

            fn from_not_nan_opt(value: Option<NotNone<$ty>>) -> Option<$ty> {
                value.and_then(|v| v.into_inner())
            }

            fn from_not_nan_ref_opt(value: Option<&NotNone<$ty>>) -> &Option<$ty> {
                match value {
                    None => &None,
                    // This is safe because `NotNone<$ty>` is a thin wrapper around
                    // `Option<$ty>`.
                    Some(num) => unsafe { &*(num as *const NotNone<$ty> as *const Option<$ty>) },
                }
            }

            fn remove_nan_mut(view: ArrayViewMut1<'_, Self>) -> ArrayViewMut1<'_, Self::NotNan> {
                let not_nan = remove_nan_mut(view);
                // This is safe because `remove_nan_mut` has removed the `None`
                // values, and `NotNone<$ty>` is a thin wrapper around `Option<$ty>`.
                unsafe {
                    ArrayViewMut1::from_shape_ptr(
                        not_nan.dim(),
                        not_nan.as_ptr() as *mut NotNone<$ty>,
                    )
                }
            }
        }
    };
}
impl_maybenan_for_opt_never_nan!(u8);
impl_maybenan_for_opt_never_nan!(u16);
impl_maybenan_for_opt_never_nan!(u32);
impl_maybenan_for_opt_never_nan!(u64);
impl_maybenan_for_opt_never_nan!(u128);
impl_maybenan_for_opt_never_nan!(i8);
impl_maybenan_for_opt_never_nan!(i16);
impl_maybenan_for_opt_never_nan!(i32);
impl_maybenan_for_opt_never_nan!(i64);
impl_maybenan_for_opt_never_nan!(i128);
impl_maybenan_for_opt_never_nan!(N32);
impl_maybenan_for_opt_never_nan!(N64);

/// A thin wrapper around `Option` that guarantees that the value is not
/// `None`.
#[derive(Clone, Copy, Debug)]
#[repr(transparent)]
pub struct NotNone<T>(Option<T>);

impl<T> NotNone<T> {
    /// Creates a new `NotNone` containing the given value.
    pub fn new(value: T) -> NotNone<T> {
        NotNone(Some(value))
    }

    /// Creates a new `NotNone` containing the given value.
    ///
    /// Returns `None` if `value` is `None`.
    pub fn try_new(value: Option<T>) -> Option<NotNone<T>> {
        if value.is_some() {
            Some(NotNone(value))
        } else {
            None
        }
    }

    /// Returns the underling option.
    pub fn into_inner(self) -> Option<T> {
        self.0
    }

    /// Moves the value out of the inner option.
    ///
    /// This method is guaranteed not to panic.
    pub fn unwrap(self) -> T {
        match self.0 {
            Some(inner) => inner,
            None => unsafe { ::std::hint::unreachable_unchecked() },
        }
    }

    /// Maps an `NotNone<T>` to `NotNone<U>` by applying a function to the
    /// contained value.
    pub fn map<U, F>(self, f: F) -> NotNone<U>
    where
        F: FnOnce(T) -> U,
    {
        NotNone::new(f(self.unwrap()))
    }
}

/// Extension trait for `ArrayBase` providing NaN-related functionality.
pub trait MaybeNanExt<A, S, D>
where
    A: MaybeNan,
    S: Data<Elem = A>,
    D: Dimension,
{
    /// Traverse the non-NaN array elements and apply a fold, returning the
    /// resulting value.
    ///
    /// Elements are visited in arbitrary order.
    fn fold_skipnan<'a, F, B>(&'a self, init: B, f: F) -> B
    where
        A: 'a,
        F: FnMut(B, &'a A::NotNan) -> B;

    /// Traverse the non-NaN elements and their indices and apply a fold,
    /// returning the resulting value.
    ///
    /// Elements are visited in arbitrary order.
    fn indexed_fold_skipnan<'a, F, B>(&'a self, init: B, f: F) -> B
    where
        A: 'a,
        F: FnMut(B, (D::Pattern, &'a A::NotNan)) -> B;

    /// Visit each non-NaN element in the array by calling `f` on each element.
    ///
    /// Elements are visited in arbitrary order.
    fn visit_skipnan<'a, F>(&'a self, f: F)
    where
        A: 'a,
        F: FnMut(&'a A::NotNan);

    /// Fold non-NaN values along an axis.
    ///
    /// Combine the non-NaN elements of each subview with the previous using
    /// the fold function and initial value init.
    fn fold_axis_skipnan<B, F>(&self, axis: Axis, init: B, fold: F) -> Array<B, D::Smaller>
    where
        D: RemoveAxis,
        F: FnMut(&B, &A::NotNan) -> B,
        B: Clone;

    /// Reduce the values along an axis into just one value, producing a new
    /// array with one less dimension.
    ///
    /// The NaN values are removed from the 1-dimensional lanes, then they are
    /// passed as mutable views to the reducer, allowing for side-effects.
    ///
    /// **Warnings**:
    ///
    /// * The lanes are visited in arbitrary order.
    ///
    /// * The order of the elements within the lanes is unspecified. However,
    ///   if `mapping` is idempotent, this method is idempotent. Additionally,
    ///   given the same input data, the lane is always ordered the same way.
    ///
    /// **Panics** if `axis` is out of bounds.
    fn map_axis_skipnan_mut<'a, B, F>(&'a mut self, axis: Axis, mapping: F) -> Array<B, D::Smaller>
    where
        A: 'a,
        S: DataMut,
        D: RemoveAxis,
        F: FnMut(ArrayViewMut1<'a, A::NotNan>) -> B;

    private_decl! {}
}

impl<A, S, D> MaybeNanExt<A, S, D> for ArrayBase<S, D>
where
    A: MaybeNan,
    S: Data<Elem = A>,
    D: Dimension,
{
    fn fold_skipnan<'a, F, B>(&'a self, init: B, mut f: F) -> B
    where
        A: 'a,
        F: FnMut(B, &'a A::NotNan) -> B,
    {
        self.fold(init, |acc, elem| {
            if let Some(not_nan) = elem.try_as_not_nan() {
                f(acc, not_nan)
            } else {
                acc
            }
        })
    }

    fn indexed_fold_skipnan<'a, F, B>(&'a self, init: B, mut f: F) -> B
    where
        A: 'a,
        F: FnMut(B, (D::Pattern, &'a A::NotNan)) -> B,
    {
        self.indexed_iter().fold(init, |acc, (idx, elem)| {
            if let Some(not_nan) = elem.try_as_not_nan() {
                f(acc, (idx, not_nan))
            } else {
                acc
            }
        })
    }

    fn visit_skipnan<'a, F>(&'a self, mut f: F)
    where
        A: 'a,
        F: FnMut(&'a A::NotNan),
    {
        self.for_each(|elem| {
            if let Some(not_nan) = elem.try_as_not_nan() {
                f(not_nan)
            }
        })
    }

    fn fold_axis_skipnan<B, F>(&self, axis: Axis, init: B, mut fold: F) -> Array<B, D::Smaller>
    where
        D: RemoveAxis,
        F: FnMut(&B, &A::NotNan) -> B,
        B: Clone,
    {
        self.fold_axis(axis, init, |acc, elem| {
            if let Some(not_nan) = elem.try_as_not_nan() {
                fold(acc, not_nan)
            } else {
                acc.clone()
            }
        })
    }

    fn map_axis_skipnan_mut<'a, B, F>(
        &'a mut self,
        axis: Axis,
        mut mapping: F,
    ) -> Array<B, D::Smaller>
    where
        A: 'a,
        S: DataMut,
        D: RemoveAxis,
        F: FnMut(ArrayViewMut1<'a, A::NotNan>) -> B,
    {
        self.map_axis_mut(axis, |lane| mapping(A::remove_nan_mut(lane)))
    }

    private_impl! {}
}

#[cfg(test)]
mod tests {
    use super::*;
    use quickcheck_macros::quickcheck;

    #[quickcheck]
    fn remove_nan_mut_idempotent(is_nan: Vec<bool>) -> bool {
        let mut values: Vec<_> = is_nan
            .into_iter()
            .map(|is_nan| if is_nan { None } else { Some(1) })
            .collect();
        let view = ArrayViewMut1::from_shape(values.len(), &mut values).unwrap();
        let removed = remove_nan_mut(view);
        removed == remove_nan_mut(removed.to_owned().view_mut())
    }

    #[quickcheck]
    fn remove_nan_mut_only_nan_remaining(is_nan: Vec<bool>) -> bool {
        let mut values: Vec<_> = is_nan
            .into_iter()
            .map(|is_nan| if is_nan { None } else { Some(1) })
            .collect();
        let view = ArrayViewMut1::from_shape(values.len(), &mut values).unwrap();
        remove_nan_mut(view).iter().all(|elem| !elem.is_nan())
    }

    #[quickcheck]
    fn remove_nan_mut_keep_all_non_nan(is_nan: Vec<bool>) -> bool {
        let non_nan_count = is_nan.iter().filter(|&&is_nan| !is_nan).count();
        let mut values: Vec<_> = is_nan
            .into_iter()
            .map(|is_nan| if is_nan { None } else { Some(1) })
            .collect();
        let view = ArrayViewMut1::from_shape(values.len(), &mut values).unwrap();
        remove_nan_mut(view).len() == non_nan_count
    }
}

mod impl_not_none;