1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
use crate::errors::EmptyInput;
use ndarray::prelude::*;
use ndarray::Data;
use num_traits::{Float, FromPrimitive};
/// Extension trait for `ArrayBase` providing functions
/// to compute different correlation measures.
pub trait CorrelationExt<A, S>
where
S: Data<Elem = A>,
{
/// Return the covariance matrix `C` for a 2-dimensional
/// array of observations `M`.
///
/// Let `(r, o)` be the shape of `M`:
/// - `r` is the number of random variables;
/// - `o` is the number of observations we have collected
/// for each random variable.
///
/// Every column in `M` is an experiment: a single observation for each
/// random variable.
/// Each row in `M` contains all the observations for a certain random variable.
///
/// The parameter `ddof` specifies the "delta degrees of freedom". For
/// example, to calculate the population covariance, use `ddof = 0`, or to
/// calculate the sample covariance (unbiased estimate), use `ddof = 1`.
///
/// The covariance of two random variables is defined as:
///
/// ```text
/// 1 n
/// cov(X, Y) = ―――――――― ∑ (xᵢ - x̅)(yᵢ - y̅)
/// n - ddof i=1
/// ```
///
/// where
///
/// ```text
/// 1 n
/// x̅ = ― ∑ xᵢ
/// n i=1
/// ```
/// and similarly for ̅y.
///
/// If `M` is empty (either zero observations or zero random variables), it returns `Err(EmptyInput)`.
///
/// **Panics** if `ddof` is negative or greater than or equal to the number of
/// observations, or if the type cast of `n_observations` from `usize` to `A` fails.
///
/// # Example
///
/// ```
/// use ndarray::{aview2, arr2};
/// use ndarray_stats::CorrelationExt;
///
/// let a = arr2(&[[1., 3., 5.],
/// [2., 4., 6.]]);
/// let covariance = a.cov(1.).unwrap();
/// assert_eq!(
/// covariance,
/// aview2(&[[4., 4.], [4., 4.]])
/// );
/// ```
fn cov(&self, ddof: A) -> Result<Array2<A>, EmptyInput>
where
A: Float + FromPrimitive;
/// Return the [Pearson correlation coefficients](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient)
/// for a 2-dimensional array of observations `M`.
///
/// Let `(r, o)` be the shape of `M`:
/// - `r` is the number of random variables;
/// - `o` is the number of observations we have collected
/// for each random variable.
///
/// Every column in `M` is an experiment: a single observation for each
/// random variable.
/// Each row in `M` contains all the observations for a certain random variable.
///
/// The Pearson correlation coefficient of two random variables is defined as:
///
/// ```text
/// cov(X, Y)
/// rho(X, Y) = ――――――――――――
/// std(X)std(Y)
/// ```
///
/// Let `R` be the matrix returned by this function. Then
/// ```text
/// R_ij = rho(X_i, X_j)
/// ```
///
/// If `M` is empty (either zero observations or zero random variables), it returns `Err(EmptyInput)`.
///
/// **Panics** if the type cast of `n_observations` from `usize` to `A` fails or
/// if the standard deviation of one of the random variables is zero and
/// division by zero panics for type A.
///
/// # Example
///
/// ```
/// use approx;
/// use ndarray::arr2;
/// use ndarray_stats::CorrelationExt;
/// use approx::AbsDiffEq;
///
/// let a = arr2(&[[1., 3., 5.],
/// [2., 4., 6.]]);
/// let corr = a.pearson_correlation().unwrap();
/// let epsilon = 1e-7;
/// assert!(
/// corr.abs_diff_eq(
/// &arr2(&[
/// [1., 1.],
/// [1., 1.],
/// ]),
/// epsilon
/// )
/// );
/// ```
fn pearson_correlation(&self) -> Result<Array2<A>, EmptyInput>
where
A: Float + FromPrimitive;
private_decl! {}
}
impl<A: 'static, S> CorrelationExt<A, S> for ArrayBase<S, Ix2>
where
S: Data<Elem = A>,
{
fn cov(&self, ddof: A) -> Result<Array2<A>, EmptyInput>
where
A: Float + FromPrimitive,
{
let observation_axis = Axis(1);
let n_observations = A::from_usize(self.len_of(observation_axis)).unwrap();
let dof = if ddof >= n_observations {
panic!(
"`ddof` needs to be strictly smaller than the \
number of observations provided for each \
random variable!"
)
} else {
n_observations - ddof
};
let mean = self.mean_axis(observation_axis);
match mean {
Some(mean) => {
let denoised = self - &mean.insert_axis(observation_axis);
let covariance = denoised.dot(&denoised.t());
Ok(covariance.mapv_into(|x| x / dof))
}
None => Err(EmptyInput),
}
}
fn pearson_correlation(&self) -> Result<Array2<A>, EmptyInput>
where
A: Float + FromPrimitive,
{
match self.dim() {
(n, m) if n > 0 && m > 0 => {
let observation_axis = Axis(1);
// The ddof value doesn't matter, as long as we use the same one
// for computing covariance and standard deviation
// We choose 0 as it is the smallest number admitted by std_axis
let ddof = A::zero();
let cov = self.cov(ddof).unwrap();
let std = self
.std_axis(observation_axis, ddof)
.insert_axis(observation_axis);
let std_matrix = std.dot(&std.t());
// element-wise division
Ok(cov / std_matrix)
}
_ => Err(EmptyInput),
}
}
private_impl! {}
}
#[cfg(test)]
mod cov_tests {
use super::*;
use ndarray::array;
use ndarray_rand::rand;
use ndarray_rand::rand_distr::Uniform;
use ndarray_rand::RandomExt;
use quickcheck_macros::quickcheck;
#[quickcheck]
fn constant_random_variables_have_zero_covariance_matrix(value: f64) -> bool {
let n_random_variables = 3;
let n_observations = 4;
let a = Array::from_elem((n_random_variables, n_observations), value);
abs_diff_eq!(
a.cov(1.).unwrap(),
&Array::zeros((n_random_variables, n_random_variables)),
epsilon = 1e-8,
)
}
#[quickcheck]
fn covariance_matrix_is_symmetric(bound: f64) -> bool {
let n_random_variables = 3;
let n_observations = 4;
let a = Array::random(
(n_random_variables, n_observations),
Uniform::new(-bound.abs(), bound.abs()),
);
let covariance = a.cov(1.).unwrap();
abs_diff_eq!(covariance, &covariance.t(), epsilon = 1e-8)
}
#[test]
#[should_panic]
fn test_invalid_ddof() {
let n_random_variables = 3;
let n_observations = 4;
let a = Array::random((n_random_variables, n_observations), Uniform::new(0., 10.));
let invalid_ddof = (n_observations as f64) + rand::random::<f64>().abs();
let _ = a.cov(invalid_ddof);
}
#[test]
fn test_covariance_zero_variables() {
let a = Array2::<f32>::zeros((0, 2));
let cov = a.cov(1.);
assert!(cov.is_ok());
assert_eq!(cov.unwrap().shape(), &[0, 0]);
}
#[test]
fn test_covariance_zero_observations() {
let a = Array2::<f32>::zeros((2, 0));
// Negative ddof (-1 < 0) to avoid invalid-ddof panic
let cov = a.cov(-1.);
assert_eq!(cov, Err(EmptyInput));
}
#[test]
fn test_covariance_zero_variables_zero_observations() {
let a = Array2::<f32>::zeros((0, 0));
// Negative ddof (-1 < 0) to avoid invalid-ddof panic
let cov = a.cov(-1.);
assert_eq!(cov, Err(EmptyInput));
}
#[test]
fn test_covariance_for_random_array() {
let a = array![
[0.72009497, 0.12568055, 0.55705966, 0.5959984, 0.69471457],
[0.56717131, 0.47619486, 0.21526298, 0.88915366, 0.91971245],
[0.59044195, 0.10720363, 0.76573717, 0.54693675, 0.95923036],
[0.24102952, 0.131347, 0.11118028, 0.21451351, 0.30515539],
[0.26952473, 0.93079841, 0.8080893, 0.42814155, 0.24642258]
];
let numpy_covariance = array![
[0.05786248, 0.02614063, 0.06446215, 0.01285105, -0.06443992],
[0.02614063, 0.08733569, 0.02436933, 0.01977437, -0.06715555],
[0.06446215, 0.02436933, 0.10052129, 0.01393589, -0.06129912],
[0.01285105, 0.01977437, 0.01393589, 0.00638795, -0.02355557],
[
-0.06443992,
-0.06715555,
-0.06129912,
-0.02355557,
0.09909855
]
];
assert_eq!(a.ndim(), 2);
assert_abs_diff_eq!(a.cov(1.).unwrap(), &numpy_covariance, epsilon = 1e-8);
}
#[test]
#[should_panic]
// We lose precision, hence the failing assert
fn test_covariance_for_badly_conditioned_array() {
let a: Array2<f64> = array![[1e12 + 1., 1e12 - 1.], [1e-6 + 1e-12, 1e-6 - 1e-12],];
let expected_covariance = array![[2., 2e-12], [2e-12, 2e-24]];
assert_abs_diff_eq!(a.cov(1.).unwrap(), &expected_covariance, epsilon = 1e-24);
}
}
#[cfg(test)]
mod pearson_correlation_tests {
use super::*;
use ndarray::array;
use ndarray::Array;
use ndarray_rand::rand_distr::Uniform;
use ndarray_rand::RandomExt;
use quickcheck_macros::quickcheck;
#[quickcheck]
fn output_matrix_is_symmetric(bound: f64) -> bool {
let n_random_variables = 3;
let n_observations = 4;
let a = Array::random(
(n_random_variables, n_observations),
Uniform::new(-bound.abs(), bound.abs()),
);
let pearson_correlation = a.pearson_correlation().unwrap();
abs_diff_eq!(
pearson_correlation.view(),
pearson_correlation.t(),
epsilon = 1e-8
)
}
#[quickcheck]
fn constant_random_variables_have_nan_correlation(value: f64) -> bool {
let n_random_variables = 3;
let n_observations = 4;
let a = Array::from_elem((n_random_variables, n_observations), value);
let pearson_correlation = a.pearson_correlation();
pearson_correlation
.unwrap()
.iter()
.map(|x| x.is_nan())
.fold(true, |acc, flag| acc & flag)
}
#[test]
fn test_zero_variables() {
let a = Array2::<f32>::zeros((0, 2));
let pearson_correlation = a.pearson_correlation();
assert_eq!(pearson_correlation, Err(EmptyInput))
}
#[test]
fn test_zero_observations() {
let a = Array2::<f32>::zeros((2, 0));
let pearson = a.pearson_correlation();
assert_eq!(pearson, Err(EmptyInput));
}
#[test]
fn test_zero_variables_zero_observations() {
let a = Array2::<f32>::zeros((0, 0));
let pearson = a.pearson_correlation();
assert_eq!(pearson, Err(EmptyInput));
}
#[test]
fn test_for_random_array() {
let a = array![
[0.16351516, 0.56863268, 0.16924196, 0.72579120],
[0.44342453, 0.19834387, 0.25411802, 0.62462382],
[0.97162731, 0.29958849, 0.17338142, 0.80198342],
[0.91727132, 0.79817799, 0.62237124, 0.38970998],
[0.26979716, 0.20887228, 0.95454999, 0.96290785]
];
let numpy_corrcoeff = array![
[1., 0.38089376, 0.08122504, -0.59931623, 0.1365648],
[0.38089376, 1., 0.80918429, -0.52615195, 0.38954398],
[0.08122504, 0.80918429, 1., 0.07134906, -0.17324776],
[-0.59931623, -0.52615195, 0.07134906, 1., -0.8743213],
[0.1365648, 0.38954398, -0.17324776, -0.8743213, 1.]
];
assert_eq!(a.ndim(), 2);
assert_abs_diff_eq!(
a.pearson_correlation().unwrap(),
numpy_corrcoeff,
epsilon = 1e-7
);
}
}