1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
use ndarray::{ArrayBase, Data, Dimension, Zip};
use num_traits::{Signed, ToPrimitive};
use std::convert::Into;
use std::ops::AddAssign;

use crate::errors::MultiInputError;

/// An extension trait for `ArrayBase` providing functions
/// to compute different deviation measures.
pub trait DeviationExt<A, S, D>
where
    S: Data<Elem = A>,
    D: Dimension,
{
    /// Counts the number of indices at which the elements of the arrays `self`
    /// and `other` are equal.
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::EmptyInput` if `self` is empty
    /// * `MultiInputError::ShapeMismatch` if `self` and `other` don't have the same shape
    fn count_eq<T>(&self, other: &ArrayBase<T, D>) -> Result<usize, MultiInputError>
    where
        A: PartialEq,
        T: Data<Elem = A>;

    /// Counts the number of indices at which the elements of the arrays `self`
    /// and `other` are not equal.
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::EmptyInput` if `self` is empty
    /// * `MultiInputError::ShapeMismatch` if `self` and `other` don't have the same shape
    fn count_neq<T>(&self, other: &ArrayBase<T, D>) -> Result<usize, MultiInputError>
    where
        A: PartialEq,
        T: Data<Elem = A>;

    /// Computes the [squared L2 distance] between `self` and `other`.
    ///
    /// ```text
    ///  n
    ///  ∑  |aᵢ - bᵢ|²
    /// i=1
    /// ```
    ///
    /// where `self` is `a` and `other` is `b`.
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::EmptyInput` if `self` is empty
    /// * `MultiInputError::ShapeMismatch` if `self` and `other` don't have the same shape
    ///
    /// [squared L2 distance]: https://en.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_distance
    fn sq_l2_dist<T>(&self, other: &ArrayBase<T, D>) -> Result<A, MultiInputError>
    where
        A: AddAssign + Clone + Signed,
        T: Data<Elem = A>;

    /// Computes the [L2 distance] between `self` and `other`.
    ///
    /// ```text
    ///      n
    /// √ (  ∑  |aᵢ - bᵢ|² )
    ///     i=1
    /// ```
    ///
    /// where `self` is `a` and `other` is `b`.
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::EmptyInput` if `self` is empty
    /// * `MultiInputError::ShapeMismatch` if `self` and `other` don't have the same shape
    ///
    /// **Panics** if the type cast from `A` to `f64` fails.
    ///
    /// [L2 distance]: https://en.wikipedia.org/wiki/Euclidean_distance
    fn l2_dist<T>(&self, other: &ArrayBase<T, D>) -> Result<f64, MultiInputError>
    where
        A: AddAssign + Clone + Signed + ToPrimitive,
        T: Data<Elem = A>;

    /// Computes the [L1 distance] between `self` and `other`.
    ///
    /// ```text
    ///  n
    ///  ∑  |aᵢ - bᵢ|
    /// i=1
    /// ```
    ///
    /// where `self` is `a` and `other` is `b`.
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::EmptyInput` if `self` is empty
    /// * `MultiInputError::ShapeMismatch` if `self` and `other` don't have the same shape
    ///
    /// [L1 distance]: https://en.wikipedia.org/wiki/Taxicab_geometry
    fn l1_dist<T>(&self, other: &ArrayBase<T, D>) -> Result<A, MultiInputError>
    where
        A: AddAssign + Clone + Signed,
        T: Data<Elem = A>;

    /// Computes the [L∞ distance] between `self` and `other`.
    ///
    /// ```text
    /// max(|aᵢ - bᵢ|)
    ///  ᵢ
    /// ```
    ///
    /// where `self` is `a` and `other` is `b`.
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::EmptyInput` if `self` is empty
    /// * `MultiInputError::ShapeMismatch` if `self` and `other` don't have the same shape
    ///
    /// [L∞ distance]: https://en.wikipedia.org/wiki/Chebyshev_distance
    fn linf_dist<T>(&self, other: &ArrayBase<T, D>) -> Result<A, MultiInputError>
    where
        A: Clone + PartialOrd + Signed,
        T: Data<Elem = A>;

    /// Computes the [mean absolute error] between `self` and `other`.
    ///
    /// ```text
    ///        n
    /// 1/n *  ∑  |aᵢ - bᵢ|
    ///       i=1
    /// ```
    ///
    /// where `self` is `a` and `other` is `b`.
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::EmptyInput` if `self` is empty
    /// * `MultiInputError::ShapeMismatch` if `self` and `other` don't have the same shape
    ///
    /// **Panics** if the type cast from `A` to `f64` fails.
    ///
    /// [mean absolute error]: https://en.wikipedia.org/wiki/Mean_absolute_error
    fn mean_abs_err<T>(&self, other: &ArrayBase<T, D>) -> Result<f64, MultiInputError>
    where
        A: AddAssign + Clone + Signed + ToPrimitive,
        T: Data<Elem = A>;

    /// Computes the [mean squared error] between `self` and `other`.
    ///
    /// ```text
    ///        n
    /// 1/n *  ∑  |aᵢ - bᵢ|²
    ///       i=1
    /// ```
    ///
    /// where `self` is `a` and `other` is `b`.
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::EmptyInput` if `self` is empty
    /// * `MultiInputError::ShapeMismatch` if `self` and `other` don't have the same shape
    ///
    /// **Panics** if the type cast from `A` to `f64` fails.
    ///
    /// [mean squared error]: https://en.wikipedia.org/wiki/Mean_squared_error
    fn mean_sq_err<T>(&self, other: &ArrayBase<T, D>) -> Result<f64, MultiInputError>
    where
        A: AddAssign + Clone + Signed + ToPrimitive,
        T: Data<Elem = A>;

    /// Computes the unnormalized [root-mean-square error] between `self` and `other`.
    ///
    /// ```text
    /// √ mse(a, b)
    /// ```
    ///
    /// where `self` is `a`, `other` is `b` and `mse` is the mean-squared-error.
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::EmptyInput` if `self` is empty
    /// * `MultiInputError::ShapeMismatch` if `self` and `other` don't have the same shape
    ///
    /// **Panics** if the type cast from `A` to `f64` fails.
    ///
    /// [root-mean-square error]: https://en.wikipedia.org/wiki/Root-mean-square_deviation
    fn root_mean_sq_err<T>(&self, other: &ArrayBase<T, D>) -> Result<f64, MultiInputError>
    where
        A: AddAssign + Clone + Signed + ToPrimitive,
        T: Data<Elem = A>;

    /// Computes the [peak signal-to-noise ratio] between `self` and `other`.
    ///
    /// ```text
    /// 10 * log10(maxv^2 / mse(a, b))
    /// ```
    ///
    /// where `self` is `a`, `other` is `b`, `mse` is the mean-squared-error
    /// and `maxv` is the maximum possible value either array can take.
    ///
    /// The following **errors** may be returned:
    ///
    /// * `MultiInputError::EmptyInput` if `self` is empty
    /// * `MultiInputError::ShapeMismatch` if `self` and `other` don't have the same shape
    ///
    /// **Panics** if the type cast from `A` to `f64` fails.
    ///
    /// [peak signal-to-noise ratio]: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
    fn peak_signal_to_noise_ratio<T>(
        &self,
        other: &ArrayBase<T, D>,
        maxv: A,
    ) -> Result<f64, MultiInputError>
    where
        A: AddAssign + Clone + Signed + ToPrimitive,
        T: Data<Elem = A>;

    private_decl! {}
}

impl<A, S, D> DeviationExt<A, S, D> for ArrayBase<S, D>
where
    S: Data<Elem = A>,
    D: Dimension,
{
    fn count_eq<T>(&self, other: &ArrayBase<T, D>) -> Result<usize, MultiInputError>
    where
        A: PartialEq,
        T: Data<Elem = A>,
    {
        return_err_if_empty!(self);
        return_err_unless_same_shape!(self, other);

        let mut count = 0;

        Zip::from(self).and(other).for_each(|a, b| {
            if a == b {
                count += 1;
            }
        });

        Ok(count)
    }

    fn count_neq<T>(&self, other: &ArrayBase<T, D>) -> Result<usize, MultiInputError>
    where
        A: PartialEq,
        T: Data<Elem = A>,
    {
        self.count_eq(other).map(|n_eq| self.len() - n_eq)
    }

    fn sq_l2_dist<T>(&self, other: &ArrayBase<T, D>) -> Result<A, MultiInputError>
    where
        A: AddAssign + Clone + Signed,
        T: Data<Elem = A>,
    {
        return_err_if_empty!(self);
        return_err_unless_same_shape!(self, other);

        let mut result = A::zero();

        Zip::from(self).and(other).for_each(|self_i, other_i| {
            let (a, b) = (self_i.clone(), other_i.clone());
            let diff = a - b;
            result += diff.clone() * diff;
        });

        Ok(result)
    }

    fn l2_dist<T>(&self, other: &ArrayBase<T, D>) -> Result<f64, MultiInputError>
    where
        A: AddAssign + Clone + Signed + ToPrimitive,
        T: Data<Elem = A>,
    {
        let sq_l2_dist = self
            .sq_l2_dist(other)?
            .to_f64()
            .expect("failed cast from type A to f64");

        Ok(sq_l2_dist.sqrt())
    }

    fn l1_dist<T>(&self, other: &ArrayBase<T, D>) -> Result<A, MultiInputError>
    where
        A: AddAssign + Clone + Signed,
        T: Data<Elem = A>,
    {
        return_err_if_empty!(self);
        return_err_unless_same_shape!(self, other);

        let mut result = A::zero();

        Zip::from(self).and(other).for_each(|self_i, other_i| {
            let (a, b) = (self_i.clone(), other_i.clone());
            result += (a - b).abs();
        });

        Ok(result)
    }

    fn linf_dist<T>(&self, other: &ArrayBase<T, D>) -> Result<A, MultiInputError>
    where
        A: Clone + PartialOrd + Signed,
        T: Data<Elem = A>,
    {
        return_err_if_empty!(self);
        return_err_unless_same_shape!(self, other);

        let mut max = A::zero();

        Zip::from(self).and(other).for_each(|self_i, other_i| {
            let (a, b) = (self_i.clone(), other_i.clone());
            let diff = (a - b).abs();
            if diff > max {
                max = diff;
            }
        });

        Ok(max)
    }

    fn mean_abs_err<T>(&self, other: &ArrayBase<T, D>) -> Result<f64, MultiInputError>
    where
        A: AddAssign + Clone + Signed + ToPrimitive,
        T: Data<Elem = A>,
    {
        let l1_dist = self
            .l1_dist(other)?
            .to_f64()
            .expect("failed cast from type A to f64");
        let n = self.len() as f64;

        Ok(l1_dist / n)
    }

    fn mean_sq_err<T>(&self, other: &ArrayBase<T, D>) -> Result<f64, MultiInputError>
    where
        A: AddAssign + Clone + Signed + ToPrimitive,
        T: Data<Elem = A>,
    {
        let sq_l2_dist = self
            .sq_l2_dist(other)?
            .to_f64()
            .expect("failed cast from type A to f64");
        let n = self.len() as f64;

        Ok(sq_l2_dist / n)
    }

    fn root_mean_sq_err<T>(&self, other: &ArrayBase<T, D>) -> Result<f64, MultiInputError>
    where
        A: AddAssign + Clone + Signed + ToPrimitive,
        T: Data<Elem = A>,
    {
        let msd = self.mean_sq_err(other)?;
        Ok(msd.sqrt())
    }

    fn peak_signal_to_noise_ratio<T>(
        &self,
        other: &ArrayBase<T, D>,
        maxv: A,
    ) -> Result<f64, MultiInputError>
    where
        A: AddAssign + Clone + Signed + ToPrimitive,
        T: Data<Elem = A>,
    {
        let maxv_f = maxv.to_f64().expect("failed cast from type A to f64");
        let msd = self.mean_sq_err(&other)?;
        let psnr = 10. * f64::log10(maxv_f * maxv_f / msd);

        Ok(psnr)
    }

    private_impl! {}
}