1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
//! Information theory (e.g. entropy, KL divergence, etc.).
use crate::errors::{EmptyInput, MultiInputError, ShapeMismatch};
use ndarray::{Array, ArrayBase, Data, Dimension, Zip};
use num_traits::Float;

/// Extension trait for `ArrayBase` providing methods
/// to compute information theory quantities
/// (e.g. entropy, Kullback–Leibler divergence, etc.).
pub trait EntropyExt<A, S, D>
where
    S: Data<Elem = A>,
    D: Dimension,
{
    /// Computes the [entropy] *S* of the array values, defined as
    ///
    /// ```text
    ///       n
    /// S = - ∑ xᵢ ln(xᵢ)
    ///      i=1
    /// ```
    ///
    /// If the array is empty, `Err(EmptyInput)` is returned.
    ///
    /// **Panics** if `ln` of any element in the array panics (which can occur for negative values for some `A`).
    ///
    /// ## Remarks
    ///
    /// The entropy is a measure used in [Information Theory]
    /// to describe a probability distribution: it only make sense
    /// when the array values sum to 1, with each entry between
    /// 0 and 1 (extremes included).
    ///
    /// The array values are **not** normalised by this function before
    /// computing the entropy to avoid introducing potentially
    /// unnecessary numerical errors (e.g. if the array were to be already normalised).
    ///
    /// By definition, *xᵢ ln(xᵢ)* is set to 0 if *xᵢ* is 0.
    ///
    /// [entropy]: https://en.wikipedia.org/wiki/Entropy_(information_theory)
    /// [Information Theory]: https://en.wikipedia.org/wiki/Information_theory
    fn entropy(&self) -> Result<A, EmptyInput>
    where
        A: Float;

    /// Computes the [Kullback-Leibler divergence] *Dₖₗ(p,q)* between two arrays,
    /// where `self`=*p*.
    ///
    /// The Kullback-Leibler divergence is defined as:
    ///
    /// ```text
    ///              n
    /// Dₖₗ(p,q) = - ∑ pᵢ ln(qᵢ/pᵢ)
    ///             i=1
    /// ```
    ///
    /// If the arrays are empty, `Err(MultiInputError::EmptyInput)` is returned.
    /// If the array shapes are not identical,
    /// `Err(MultiInputError::ShapeMismatch)` is returned.
    ///
    /// **Panics** if, for a pair of elements *(pᵢ, qᵢ)* from *p* and *q*, computing
    /// *ln(qᵢ/pᵢ)* is a panic cause for `A`.
    ///
    /// ## Remarks
    ///
    /// The Kullback-Leibler divergence is a measure used in [Information Theory]
    /// to describe the relationship between two probability distribution: it only make sense
    /// when each array sums to 1 with entries between 0 and 1 (extremes included).
    ///
    /// The array values are **not** normalised by this function before
    /// computing the entropy to avoid introducing potentially
    /// unnecessary numerical errors (e.g. if the array were to be already normalised).
    ///
    /// By definition, *pᵢ ln(qᵢ/pᵢ)* is set to 0 if *pᵢ* is 0.
    ///
    /// [Kullback-Leibler divergence]: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
    /// [Information Theory]: https://en.wikipedia.org/wiki/Information_theory
    fn kl_divergence<S2>(&self, q: &ArrayBase<S2, D>) -> Result<A, MultiInputError>
    where
        S2: Data<Elem = A>,
        A: Float;

    /// Computes the [cross entropy] *H(p,q)* between two arrays,
    /// where `self`=*p*.
    ///
    /// The cross entropy is defined as:
    ///
    /// ```text
    ///            n
    /// H(p,q) = - ∑ pᵢ ln(qᵢ)
    ///           i=1
    /// ```
    ///
    /// If the arrays are empty, `Err(MultiInputError::EmptyInput)` is returned.
    /// If the array shapes are not identical,
    /// `Err(MultiInputError::ShapeMismatch)` is returned.
    ///
    /// **Panics** if any element in *q* is negative and taking the logarithm of a negative number
    /// is a panic cause for `A`.
    ///
    /// ## Remarks
    ///
    /// The cross entropy is a measure used in [Information Theory]
    /// to describe the relationship between two probability distributions: it only makes sense
    /// when each array sums to 1 with entries between 0 and 1 (extremes included).
    ///
    /// The array values are **not** normalised by this function before
    /// computing the entropy to avoid introducing potentially
    /// unnecessary numerical errors (e.g. if the array were to be already normalised).
    ///
    /// The cross entropy is often used as an objective/loss function in
    /// [optimization problems], including [machine learning].
    ///
    /// By definition, *pᵢ ln(qᵢ)* is set to 0 if *pᵢ* is 0.
    ///
    /// [cross entropy]: https://en.wikipedia.org/wiki/Cross-entropy
    /// [Information Theory]: https://en.wikipedia.org/wiki/Information_theory
    /// [optimization problems]: https://en.wikipedia.org/wiki/Cross-entropy_method
    /// [machine learning]: https://en.wikipedia.org/wiki/Cross_entropy#Cross-entropy_error_function_and_logistic_regression
    fn cross_entropy<S2>(&self, q: &ArrayBase<S2, D>) -> Result<A, MultiInputError>
    where
        S2: Data<Elem = A>,
        A: Float;

    private_decl! {}
}

impl<A, S, D> EntropyExt<A, S, D> for ArrayBase<S, D>
where
    S: Data<Elem = A>,
    D: Dimension,
{
    fn entropy(&self) -> Result<A, EmptyInput>
    where
        A: Float,
    {
        if self.is_empty() {
            Err(EmptyInput)
        } else {
            let entropy = -self
                .mapv(|x| {
                    if x == A::zero() {
                        A::zero()
                    } else {
                        x * x.ln()
                    }
                })
                .sum();
            Ok(entropy)
        }
    }

    fn kl_divergence<S2>(&self, q: &ArrayBase<S2, D>) -> Result<A, MultiInputError>
    where
        A: Float,
        S2: Data<Elem = A>,
    {
        if self.is_empty() {
            return Err(MultiInputError::EmptyInput);
        }
        if self.shape() != q.shape() {
            return Err(ShapeMismatch {
                first_shape: self.shape().to_vec(),
                second_shape: q.shape().to_vec(),
            }
            .into());
        }

        let mut temp = Array::zeros(self.raw_dim());
        Zip::from(&mut temp)
            .and(self)
            .and(q)
            .for_each(|result, &p, &q| {
                *result = {
                    if p == A::zero() {
                        A::zero()
                    } else {
                        p * (q / p).ln()
                    }
                }
            });
        let kl_divergence = -temp.sum();
        Ok(kl_divergence)
    }

    fn cross_entropy<S2>(&self, q: &ArrayBase<S2, D>) -> Result<A, MultiInputError>
    where
        S2: Data<Elem = A>,
        A: Float,
    {
        if self.is_empty() {
            return Err(MultiInputError::EmptyInput);
        }
        if self.shape() != q.shape() {
            return Err(ShapeMismatch {
                first_shape: self.shape().to_vec(),
                second_shape: q.shape().to_vec(),
            }
            .into());
        }

        let mut temp = Array::zeros(self.raw_dim());
        Zip::from(&mut temp)
            .and(self)
            .and(q)
            .for_each(|result, &p, &q| {
                *result = {
                    if p == A::zero() {
                        A::zero()
                    } else {
                        p * q.ln()
                    }
                }
            });
        let cross_entropy = -temp.sum();
        Ok(cross_entropy)
    }

    private_impl! {}
}

#[cfg(test)]
mod tests {
    use super::EntropyExt;
    use crate::errors::{EmptyInput, MultiInputError};
    use approx::assert_abs_diff_eq;
    use ndarray::{array, Array1};
    use noisy_float::types::n64;
    use std::f64;

    #[test]
    fn test_entropy_with_nan_values() {
        let a = array![f64::NAN, 1.];
        assert!(a.entropy().unwrap().is_nan());
    }

    #[test]
    fn test_entropy_with_empty_array_of_floats() {
        let a: Array1<f64> = array![];
        assert_eq!(a.entropy(), Err(EmptyInput));
    }

    #[test]
    fn test_entropy_with_array_of_floats() {
        // Array of probability values - normalized and positive.
        let a: Array1<f64> = array![
            0.03602474, 0.01900344, 0.03510129, 0.03414964, 0.00525311, 0.03368976, 0.00065396,
            0.02906146, 0.00063687, 0.01597306, 0.00787625, 0.00208243, 0.01450896, 0.01803418,
            0.02055336, 0.03029759, 0.03323628, 0.01218822, 0.0001873, 0.01734179, 0.03521668,
            0.02564429, 0.02421992, 0.03540229, 0.03497635, 0.03582331, 0.026558, 0.02460495,
            0.02437716, 0.01212838, 0.00058464, 0.00335236, 0.02146745, 0.00930306, 0.01821588,
            0.02381928, 0.02055073, 0.01483779, 0.02284741, 0.02251385, 0.00976694, 0.02864634,
            0.00802828, 0.03464088, 0.03557152, 0.01398894, 0.01831756, 0.0227171, 0.00736204,
            0.01866295,
        ];
        // Computed using scipy.stats.entropy
        let expected_entropy = 3.721606155686918;

        assert_abs_diff_eq!(a.entropy().unwrap(), expected_entropy, epsilon = 1e-6);
    }

    #[test]
    fn test_cross_entropy_and_kl_with_nan_values() -> Result<(), MultiInputError> {
        let a = array![f64::NAN, 1.];
        let b = array![2., 1.];
        assert!(a.cross_entropy(&b)?.is_nan());
        assert!(b.cross_entropy(&a)?.is_nan());
        assert!(a.kl_divergence(&b)?.is_nan());
        assert!(b.kl_divergence(&a)?.is_nan());
        Ok(())
    }

    #[test]
    fn test_cross_entropy_and_kl_with_same_n_dimension_but_different_n_elements() {
        let p = array![f64::NAN, 1.];
        let q = array![2., 1., 5.];
        assert!(q.cross_entropy(&p).is_err());
        assert!(p.cross_entropy(&q).is_err());
        assert!(q.kl_divergence(&p).is_err());
        assert!(p.kl_divergence(&q).is_err());
    }

    #[test]
    fn test_cross_entropy_and_kl_with_different_shape_but_same_n_elements() {
        // p: 3x2, 6 elements
        let p = array![[f64::NAN, 1.], [6., 7.], [10., 20.]];
        // q: 2x3, 6 elements
        let q = array![[2., 1., 5.], [1., 1., 7.],];
        assert!(q.cross_entropy(&p).is_err());
        assert!(p.cross_entropy(&q).is_err());
        assert!(q.kl_divergence(&p).is_err());
        assert!(p.kl_divergence(&q).is_err());
    }

    #[test]
    fn test_cross_entropy_and_kl_with_empty_array_of_floats() {
        let p: Array1<f64> = array![];
        let q: Array1<f64> = array![];
        assert!(p.cross_entropy(&q).unwrap_err().is_empty_input());
        assert!(p.kl_divergence(&q).unwrap_err().is_empty_input());
    }

    #[test]
    fn test_cross_entropy_and_kl_with_negative_qs() -> Result<(), MultiInputError> {
        let p = array![1.];
        let q = array![-1.];
        let cross_entropy: f64 = p.cross_entropy(&q)?;
        let kl_divergence: f64 = p.kl_divergence(&q)?;
        assert!(cross_entropy.is_nan());
        assert!(kl_divergence.is_nan());
        Ok(())
    }

    #[test]
    #[should_panic]
    fn test_cross_entropy_with_noisy_negative_qs() {
        let p = array![n64(1.)];
        let q = array![n64(-1.)];
        let _ = p.cross_entropy(&q);
    }

    #[test]
    #[should_panic]
    fn test_kl_with_noisy_negative_qs() {
        let p = array![n64(1.)];
        let q = array![n64(-1.)];
        let _ = p.kl_divergence(&q);
    }

    #[test]
    fn test_cross_entropy_and_kl_with_zeroes_p() -> Result<(), MultiInputError> {
        let p = array![0., 0.];
        let q = array![0., 0.5];
        assert_eq!(p.cross_entropy(&q)?, 0.);
        assert_eq!(p.kl_divergence(&q)?, 0.);
        Ok(())
    }

    #[test]
    fn test_cross_entropy_and_kl_with_zeroes_q_and_different_data_ownership(
    ) -> Result<(), MultiInputError> {
        let p = array![0.5, 0.5];
        let mut q = array![0.5, 0.];
        assert_eq!(p.cross_entropy(&q.view_mut())?, f64::INFINITY);
        assert_eq!(p.kl_divergence(&q.view_mut())?, f64::INFINITY);
        Ok(())
    }

    #[test]
    fn test_cross_entropy() -> Result<(), MultiInputError> {
        // Arrays of probability values - normalized and positive.
        let p: Array1<f64> = array![
            0.05340169, 0.02508511, 0.03460454, 0.00352313, 0.07837615, 0.05859495, 0.05782189,
            0.0471258, 0.05594036, 0.01630048, 0.07085162, 0.05365855, 0.01959158, 0.05020174,
            0.03801479, 0.00092234, 0.08515856, 0.00580683, 0.0156542, 0.0860375, 0.0724246,
            0.00727477, 0.01004402, 0.01854399, 0.03504082,
        ];
        let q: Array1<f64> = array![
            0.06622616, 0.0478948, 0.03227816, 0.06460884, 0.05795974, 0.01377489, 0.05604812,
            0.01202684, 0.01647579, 0.03392697, 0.01656126, 0.00867528, 0.0625685, 0.07381292,
            0.05489067, 0.01385491, 0.03639174, 0.00511611, 0.05700415, 0.05183825, 0.06703064,
            0.01813342, 0.0007763, 0.0735472, 0.05857833,
        ];
        // Computed using scipy.stats.entropy(p) + scipy.stats.entropy(p, q)
        let expected_cross_entropy = 3.385347705020779;

        assert_abs_diff_eq!(p.cross_entropy(&q)?, expected_cross_entropy, epsilon = 1e-6);
        Ok(())
    }

    #[test]
    fn test_kl() -> Result<(), MultiInputError> {
        // Arrays of probability values - normalized and positive.
        let p: Array1<f64> = array![
            0.00150472, 0.01388706, 0.03495376, 0.03264211, 0.03067355, 0.02183501, 0.00137516,
            0.02213802, 0.02745017, 0.02163975, 0.0324602, 0.03622766, 0.00782343, 0.00222498,
            0.03028156, 0.02346124, 0.00071105, 0.00794496, 0.0127609, 0.02899124, 0.01281487,
            0.0230803, 0.01531864, 0.00518158, 0.02233383, 0.0220279, 0.03196097, 0.03710063,
            0.01817856, 0.03524661, 0.02902393, 0.00853364, 0.01255615, 0.03556958, 0.00400151,
            0.01335932, 0.01864965, 0.02371322, 0.02026543, 0.0035375, 0.01988341, 0.02621831,
            0.03564644, 0.01389121, 0.03151622, 0.03195532, 0.00717521, 0.03547256, 0.00371394,
            0.01108706,
        ];
        let q: Array1<f64> = array![
            0.02038386, 0.03143914, 0.02630206, 0.0171595, 0.0067072, 0.00911324, 0.02635717,
            0.01269113, 0.0302361, 0.02243133, 0.01902902, 0.01297185, 0.02118908, 0.03309548,
            0.01266687, 0.0184529, 0.01830936, 0.03430437, 0.02898924, 0.02238251, 0.0139771,
            0.01879774, 0.02396583, 0.03019978, 0.01421278, 0.02078981, 0.03542451, 0.02887438,
            0.01261783, 0.01014241, 0.03263407, 0.0095969, 0.01923903, 0.0051315, 0.00924686,
            0.00148845, 0.00341391, 0.01480373, 0.01920798, 0.03519871, 0.03315135, 0.02099325,
            0.03251755, 0.00337555, 0.03432165, 0.01763753, 0.02038337, 0.01923023, 0.01438769,
            0.02082707,
        ];
        // Computed using scipy.stats.entropy(p, q)
        let expected_kl = 0.3555862567800096;

        assert_abs_diff_eq!(p.kl_divergence(&q)?, expected_kl, epsilon = 1e-6);
        Ok(())
    }
}