1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
use ndarray::prelude::*;
use ndarray::{s, Data, DataMut, RemoveAxis};
use noisy_float::types::{N32, N64};
use std::mem;
/// A number type that can have not-a-number values.
pub trait MaybeNan: Sized {
/// A type that is guaranteed not to be a NaN value.
type NotNan;
/// Returns `true` if the value is a NaN value.
fn is_nan(&self) -> bool;
/// Tries to convert the value to `NotNan`.
///
/// Returns `None` if the value is a NaN value.
fn try_as_not_nan(&self) -> Option<&Self::NotNan>;
/// Converts the value.
///
/// If the value is `None`, a NaN value is returned.
fn from_not_nan(_: Self::NotNan) -> Self;
/// Converts the value.
///
/// If the value is `None`, a NaN value is returned.
fn from_not_nan_opt(_: Option<Self::NotNan>) -> Self;
/// Converts the value.
///
/// If the value is `None`, a NaN value is returned.
fn from_not_nan_ref_opt(_: Option<&Self::NotNan>) -> &Self;
/// Returns a view with the NaN values removed.
///
/// This modifies the input view by moving elements as necessary. The final
/// order of the elements is unspecified. However, this method is
/// idempotent, and given the same input data, the result is always ordered
/// the same way.
fn remove_nan_mut(_: ArrayViewMut1<'_, Self>) -> ArrayViewMut1<'_, Self::NotNan>;
}
/// Returns a view with the NaN values removed.
///
/// This modifies the input view by moving elements as necessary.
fn remove_nan_mut<A: MaybeNan>(mut view: ArrayViewMut1<'_, A>) -> ArrayViewMut1<'_, A> {
if view.is_empty() {
return view.slice_move(s![..0]);
}
let mut i = 0;
let mut j = view.len() - 1;
loop {
// At this point, `i == 0 || !view[i-1].is_nan()`
// and `j == view.len() - 1 || view[j+1].is_nan()`.
while i <= j && !view[i].is_nan() {
i += 1;
}
// At this point, `view[i].is_nan() || i == j + 1`.
while j > i && view[j].is_nan() {
j -= 1;
}
// At this point, `!view[j].is_nan() || j == i`.
if i >= j {
return view.slice_move(s![..i]);
} else {
view.swap(i, j);
i += 1;
j -= 1;
}
}
}
/// Casts a view from one element type to another.
///
/// # Panics
///
/// Panics if `T` and `U` differ in size or alignment.
///
/// # Safety
///
/// The caller must ensure that qll elements in `view` are valid values for type `U`.
unsafe fn cast_view_mut<T, U>(mut view: ArrayViewMut1<'_, T>) -> ArrayViewMut1<'_, U> {
assert_eq!(mem::size_of::<T>(), mem::size_of::<U>());
assert_eq!(mem::align_of::<T>(), mem::align_of::<U>());
let ptr: *mut U = view.as_mut_ptr().cast();
let len: usize = view.len_of(Axis(0));
let stride: isize = view.stride_of(Axis(0));
if len <= 1 {
// We can use a stride of `0` because the stride is irrelevant for the `len == 1` case.
let stride = 0;
ArrayViewMut1::from_shape_ptr([len].strides([stride]), ptr)
} else if stride >= 0 {
let stride = stride as usize;
ArrayViewMut1::from_shape_ptr([len].strides([stride]), ptr)
} else {
// At this point, stride < 0. We have to construct the view by using the inverse of the
// stride and then inverting the axis, since `ArrayViewMut::from_shape_ptr` requires the
// stride to be nonnegative.
let neg_stride = stride.checked_neg().unwrap() as usize;
// This is safe because `ndarray` guarantees that it's safe to offset the
// pointer anywhere in the array.
let neg_ptr = ptr.offset((len - 1) as isize * stride);
let mut v = ArrayViewMut1::from_shape_ptr([len].strides([neg_stride]), neg_ptr);
v.invert_axis(Axis(0));
v
}
}
macro_rules! impl_maybenan_for_fxx {
($fxx:ident, $Nxx:ident) => {
impl MaybeNan for $fxx {
type NotNan = $Nxx;
fn is_nan(&self) -> bool {
$fxx::is_nan(*self)
}
fn try_as_not_nan(&self) -> Option<&$Nxx> {
$Nxx::try_borrowed(self)
}
fn from_not_nan(value: $Nxx) -> $fxx {
value.raw()
}
fn from_not_nan_opt(value: Option<$Nxx>) -> $fxx {
match value {
None => ::std::$fxx::NAN,
Some(num) => num.raw(),
}
}
fn from_not_nan_ref_opt(value: Option<&$Nxx>) -> &$fxx {
match value {
None => &::std::$fxx::NAN,
Some(num) => num.as_ref(),
}
}
fn remove_nan_mut(view: ArrayViewMut1<'_, $fxx>) -> ArrayViewMut1<'_, $Nxx> {
let not_nan = remove_nan_mut(view);
// This is safe because `remove_nan_mut` has removed the NaN values, and `$Nxx` is
// a thin wrapper around `$fxx`.
unsafe { cast_view_mut(not_nan) }
}
}
};
}
impl_maybenan_for_fxx!(f32, N32);
impl_maybenan_for_fxx!(f64, N64);
macro_rules! impl_maybenan_for_opt_never_nan {
($ty:ty) => {
impl MaybeNan for Option<$ty> {
type NotNan = NotNone<$ty>;
fn is_nan(&self) -> bool {
self.is_none()
}
fn try_as_not_nan(&self) -> Option<&NotNone<$ty>> {
if self.is_none() {
None
} else {
// This is safe because we have checked for the `None`
// case, and `NotNone<$ty>` is a thin wrapper around `Option<$ty>`.
Some(unsafe { &*(self as *const Option<$ty> as *const NotNone<$ty>) })
}
}
fn from_not_nan(value: NotNone<$ty>) -> Option<$ty> {
value.into_inner()
}
fn from_not_nan_opt(value: Option<NotNone<$ty>>) -> Option<$ty> {
value.and_then(|v| v.into_inner())
}
fn from_not_nan_ref_opt(value: Option<&NotNone<$ty>>) -> &Option<$ty> {
match value {
None => &None,
// This is safe because `NotNone<$ty>` is a thin wrapper around
// `Option<$ty>`.
Some(num) => unsafe { &*(num as *const NotNone<$ty> as *const Option<$ty>) },
}
}
fn remove_nan_mut(view: ArrayViewMut1<'_, Self>) -> ArrayViewMut1<'_, Self::NotNan> {
let not_nan = remove_nan_mut(view);
// This is safe because `remove_nan_mut` has removed the `None`
// values, and `NotNone<$ty>` is a thin wrapper around `Option<$ty>`.
unsafe {
ArrayViewMut1::from_shape_ptr(
not_nan.dim(),
not_nan.as_ptr() as *mut NotNone<$ty>,
)
}
}
}
};
}
impl_maybenan_for_opt_never_nan!(u8);
impl_maybenan_for_opt_never_nan!(u16);
impl_maybenan_for_opt_never_nan!(u32);
impl_maybenan_for_opt_never_nan!(u64);
impl_maybenan_for_opt_never_nan!(u128);
impl_maybenan_for_opt_never_nan!(i8);
impl_maybenan_for_opt_never_nan!(i16);
impl_maybenan_for_opt_never_nan!(i32);
impl_maybenan_for_opt_never_nan!(i64);
impl_maybenan_for_opt_never_nan!(i128);
impl_maybenan_for_opt_never_nan!(N32);
impl_maybenan_for_opt_never_nan!(N64);
/// A thin wrapper around `Option` that guarantees that the value is not
/// `None`.
#[derive(Clone, Copy, Debug)]
#[repr(transparent)]
pub struct NotNone<T>(Option<T>);
impl<T> NotNone<T> {
/// Creates a new `NotNone` containing the given value.
pub fn new(value: T) -> NotNone<T> {
NotNone(Some(value))
}
/// Creates a new `NotNone` containing the given value.
///
/// Returns `None` if `value` is `None`.
pub fn try_new(value: Option<T>) -> Option<NotNone<T>> {
if value.is_some() {
Some(NotNone(value))
} else {
None
}
}
/// Returns the underling option.
pub fn into_inner(self) -> Option<T> {
self.0
}
/// Moves the value out of the inner option.
///
/// This method is guaranteed not to panic.
pub fn unwrap(self) -> T {
match self.0 {
Some(inner) => inner,
None => unsafe { ::std::hint::unreachable_unchecked() },
}
}
/// Maps an `NotNone<T>` to `NotNone<U>` by applying a function to the
/// contained value.
pub fn map<U, F>(self, f: F) -> NotNone<U>
where
F: FnOnce(T) -> U,
{
NotNone::new(f(self.unwrap()))
}
}
/// Extension trait for `ArrayBase` providing NaN-related functionality.
pub trait MaybeNanExt<A, S, D>
where
A: MaybeNan,
S: Data<Elem = A>,
D: Dimension,
{
/// Traverse the non-NaN array elements and apply a fold, returning the
/// resulting value.
///
/// Elements are visited in arbitrary order.
fn fold_skipnan<'a, F, B>(&'a self, init: B, f: F) -> B
where
A: 'a,
F: FnMut(B, &'a A::NotNan) -> B;
/// Traverse the non-NaN elements and their indices and apply a fold,
/// returning the resulting value.
///
/// Elements are visited in arbitrary order.
fn indexed_fold_skipnan<'a, F, B>(&'a self, init: B, f: F) -> B
where
A: 'a,
F: FnMut(B, (D::Pattern, &'a A::NotNan)) -> B;
/// Visit each non-NaN element in the array by calling `f` on each element.
///
/// Elements are visited in arbitrary order.
fn visit_skipnan<'a, F>(&'a self, f: F)
where
A: 'a,
F: FnMut(&'a A::NotNan);
/// Fold non-NaN values along an axis.
///
/// Combine the non-NaN elements of each subview with the previous using
/// the fold function and initial value init.
fn fold_axis_skipnan<B, F>(&self, axis: Axis, init: B, fold: F) -> Array<B, D::Smaller>
where
D: RemoveAxis,
F: FnMut(&B, &A::NotNan) -> B,
B: Clone;
/// Reduce the values along an axis into just one value, producing a new
/// array with one less dimension.
///
/// The NaN values are removed from the 1-dimensional lanes, then they are
/// passed as mutable views to the reducer, allowing for side-effects.
///
/// **Warnings**:
///
/// * The lanes are visited in arbitrary order.
///
/// * The order of the elements within the lanes is unspecified. However,
/// if `mapping` is idempotent, this method is idempotent. Additionally,
/// given the same input data, the lane is always ordered the same way.
///
/// **Panics** if `axis` is out of bounds.
fn map_axis_skipnan_mut<'a, B, F>(&'a mut self, axis: Axis, mapping: F) -> Array<B, D::Smaller>
where
A: 'a,
S: DataMut,
D: RemoveAxis,
F: FnMut(ArrayViewMut1<'a, A::NotNan>) -> B;
private_decl! {}
}
impl<A, S, D> MaybeNanExt<A, S, D> for ArrayBase<S, D>
where
A: MaybeNan,
S: Data<Elem = A>,
D: Dimension,
{
fn fold_skipnan<'a, F, B>(&'a self, init: B, mut f: F) -> B
where
A: 'a,
F: FnMut(B, &'a A::NotNan) -> B,
{
self.fold(init, |acc, elem| {
if let Some(not_nan) = elem.try_as_not_nan() {
f(acc, not_nan)
} else {
acc
}
})
}
fn indexed_fold_skipnan<'a, F, B>(&'a self, init: B, mut f: F) -> B
where
A: 'a,
F: FnMut(B, (D::Pattern, &'a A::NotNan)) -> B,
{
self.indexed_iter().fold(init, |acc, (idx, elem)| {
if let Some(not_nan) = elem.try_as_not_nan() {
f(acc, (idx, not_nan))
} else {
acc
}
})
}
fn visit_skipnan<'a, F>(&'a self, mut f: F)
where
A: 'a,
F: FnMut(&'a A::NotNan),
{
self.for_each(|elem| {
if let Some(not_nan) = elem.try_as_not_nan() {
f(not_nan)
}
})
}
fn fold_axis_skipnan<B, F>(&self, axis: Axis, init: B, mut fold: F) -> Array<B, D::Smaller>
where
D: RemoveAxis,
F: FnMut(&B, &A::NotNan) -> B,
B: Clone,
{
self.fold_axis(axis, init, |acc, elem| {
if let Some(not_nan) = elem.try_as_not_nan() {
fold(acc, not_nan)
} else {
acc.clone()
}
})
}
fn map_axis_skipnan_mut<'a, B, F>(
&'a mut self,
axis: Axis,
mut mapping: F,
) -> Array<B, D::Smaller>
where
A: 'a,
S: DataMut,
D: RemoveAxis,
F: FnMut(ArrayViewMut1<'a, A::NotNan>) -> B,
{
self.map_axis_mut(axis, |lane| mapping(A::remove_nan_mut(lane)))
}
private_impl! {}
}
#[cfg(test)]
mod tests {
use super::*;
use quickcheck_macros::quickcheck;
#[quickcheck]
fn remove_nan_mut_idempotent(is_nan: Vec<bool>) -> bool {
let mut values: Vec<_> = is_nan
.into_iter()
.map(|is_nan| if is_nan { None } else { Some(1) })
.collect();
let view = ArrayViewMut1::from_shape(values.len(), &mut values).unwrap();
let removed = remove_nan_mut(view);
removed == remove_nan_mut(removed.to_owned().view_mut())
}
#[quickcheck]
fn remove_nan_mut_only_nan_remaining(is_nan: Vec<bool>) -> bool {
let mut values: Vec<_> = is_nan
.into_iter()
.map(|is_nan| if is_nan { None } else { Some(1) })
.collect();
let view = ArrayViewMut1::from_shape(values.len(), &mut values).unwrap();
remove_nan_mut(view).iter().all(|elem| !elem.is_nan())
}
#[quickcheck]
fn remove_nan_mut_keep_all_non_nan(is_nan: Vec<bool>) -> bool {
let non_nan_count = is_nan.iter().filter(|&&is_nan| !is_nan).count();
let mut values: Vec<_> = is_nan
.into_iter()
.map(|is_nan| if is_nan { None } else { Some(1) })
.collect();
let view = ArrayViewMut1::from_shape(values.len(), &mut values).unwrap();
remove_nan_mut(view).len() == non_nan_count
}
}
mod impl_not_none;