1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
use crate::{Array, ArrayBase, DataMut, Dimension, IntoNdProducer, NdProducer, Zip};
use crate::AssignElem;
use crate::parallel::prelude::*;
use crate::parallel::par::ParallelSplits;
use super::send_producer::SendProducer;
use crate::partial::Partial;
/// # Parallel methods
///
/// These methods require crate feature `rayon`.
impl<A, S, D> ArrayBase<S, D>
where
S: DataMut<Elem = A>,
D: Dimension,
A: Send + Sync,
{
/// Parallel version of `map_inplace`.
///
/// Modify the array in place by calling `f` by mutable reference on each element.
///
/// Elements are visited in arbitrary order.
pub fn par_map_inplace<F>(&mut self, f: F)
where
F: Fn(&mut A) + Sync + Send,
{
self.view_mut().into_par_iter().for_each(f)
}
/// Parallel version of `mapv_inplace`.
///
/// Modify the array in place by calling `f` by **v**alue on each element.
/// The array is updated with the new values.
///
/// Elements are visited in arbitrary order.
pub fn par_mapv_inplace<F>(&mut self, f: F)
where
F: Fn(A) -> A + Sync + Send,
A: Clone,
{
self.view_mut()
.into_par_iter()
.for_each(move |x| *x = f(x.clone()))
}
}
// Zip
const COLLECT_MAX_SPLITS: usize = 10;
macro_rules! zip_impl {
($([$notlast:ident $($p:ident)*],)+) => {
$(
#[allow(non_snake_case)]
impl<D, $($p),*> Zip<($($p,)*), D>
where $($p::Item : Send , )*
$($p : Send , )*
D: Dimension,
$($p: NdProducer<Dim=D> ,)*
{
/// The `par_for_each` method for `Zip`.
///
/// This is a shorthand for using `.into_par_iter().for_each()` on
/// `Zip`.
///
/// Requires crate feature `rayon`.
pub fn par_for_each<F>(self, function: F)
where F: Fn($($p::Item),*) + Sync + Send
{
self.into_par_iter().for_each(move |($($p,)*)| function($($p),*))
}
/// The `par_apply` method for `Zip`.
///
/// This is a shorthand for using `.into_par_iter().for_each()` on
/// `Zip`.
///
/// Requires crate feature `rayon`.
#[deprecated(note="Renamed to .par_for_each()", since="0.15.0")]
pub fn par_apply<F>(self, function: F)
where F: Fn($($p::Item),*) + Sync + Send
{
self.into_par_iter().for_each(move |($($p,)*)| function($($p),*))
}
expand_if!(@bool [$notlast]
/// Map and collect the results into a new array, which has the same size as the
/// inputs.
///
/// If all inputs are c- or f-order respectively, that is preserved in the output.
pub fn par_map_collect<R>(self, f: impl Fn($($p::Item,)* ) -> R + Sync + Send)
-> Array<R, D>
where R: Send
{
let mut output = self.uninitialized_for_current_layout::<R>();
let total_len = output.len();
// Create a parallel iterator that produces chunks of the zip with the output
// array. It's crucial that both parts split in the same way, and in a way
// so that the chunks of the output are still contig.
//
// Use a raw view so that we can alias the output data here and in the partial
// result.
let splits = unsafe {
ParallelSplits {
iter: self.and(SendProducer::new(output.raw_view_mut().cast::<R>())),
// Keep it from splitting the Zip down too small
max_splits: COLLECT_MAX_SPLITS,
}
};
let collect_result = splits.map(move |zip| {
// Apply the mapping function on this chunk of the zip
// Create a partial result for the contiguous slice of data being written to
unsafe {
zip.collect_with_partial(&f)
}
})
.reduce(Partial::stub, Partial::try_merge);
if std::mem::needs_drop::<R>() {
debug_assert_eq!(total_len, collect_result.len,
"collect len is not correct, expected {}", total_len);
assert!(collect_result.len == total_len,
"Collect: Expected number of writes not completed");
}
// Here the collect result is complete, and we release its ownership and transfer
// it to the output array.
collect_result.release_ownership();
unsafe {
output.assume_init()
}
}
/// Map and collect the results into a new array, which has the same size as the
/// inputs.
///
/// If all inputs are c- or f-order respectively, that is preserved in the output.
#[deprecated(note="Renamed to .par_map_collect()", since="0.15.0")]
pub fn par_apply_collect<R>(self, f: impl Fn($($p::Item,)* ) -> R + Sync + Send)
-> Array<R, D>
where R: Send
{
self.par_map_collect(f)
}
/// Map and assign the results into the producer `into`, which should have the same
/// size as the other inputs.
///
/// The producer should have assignable items as dictated by the `AssignElem` trait,
/// for example `&mut R`.
pub fn par_map_assign_into<R, Q>(self, into: Q, f: impl Fn($($p::Item,)* ) -> R + Sync + Send)
where Q: IntoNdProducer<Dim=D>,
Q::Item: AssignElem<R> + Send,
Q::Output: Send,
{
self.and(into)
.par_for_each(move |$($p, )* output_| {
output_.assign_elem(f($($p ),*));
});
}
/// Apply and assign the results into the producer `into`, which should have the same
/// size as the other inputs.
///
/// The producer should have assignable items as dictated by the `AssignElem` trait,
/// for example `&mut R`.
#[deprecated(note="Renamed to .par_map_assign_into()", since="0.15.0")]
pub fn par_apply_assign_into<R, Q>(self, into: Q, f: impl Fn($($p::Item,)* ) -> R + Sync + Send)
where Q: IntoNdProducer<Dim=D>,
Q::Item: AssignElem<R> + Send,
Q::Output: Send,
{
self.par_map_assign_into(into, f)
}
/// Parallel version of `fold`.
///
/// Splits the producer in multiple tasks which each accumulate a single value
/// using the `fold` closure. Those tasks are executed in parallel and their results
/// are then combined to a single value using the `reduce` closure.
///
/// The `identity` closure provides the initial values for each of the tasks and
/// for the final reduction.
///
/// This is a shorthand for calling `self.into_par_iter().fold(...).reduce(...)`.
///
/// Note that it is often more efficient to parallelize not per-element but rather
/// based on larger chunks of an array like generalized rows and operating on each chunk
/// using a sequential variant of the accumulation.
/// For example, sum each row sequentially and in parallel, taking advantage of locality
/// and vectorization within each task, and then reduce their sums to the sum of the matrix.
///
/// Also note that the splitting of the producer into multiple tasks is _not_ deterministic
/// which needs to be considered when the accuracy of such an operation is analyzed.
///
/// ## Examples
///
/// ```rust
/// use ndarray::{Array, Zip};
///
/// let a = Array::<usize, _>::ones((128, 1024));
/// let b = Array::<usize, _>::ones(128);
///
/// let weighted_sum = Zip::from(a.rows()).and(&b).par_fold(
/// || 0,
/// |sum, row, factor| sum + row.sum() * factor,
/// |sum, other_sum| sum + other_sum,
/// );
///
/// assert_eq!(weighted_sum, a.len());
/// ```
pub fn par_fold<ID, F, R, T>(self, identity: ID, fold: F, reduce: R) -> T
where
ID: Fn() -> T + Send + Sync + Clone,
F: Fn(T, $($p::Item),*) -> T + Send + Sync,
R: Fn(T, T) -> T + Send + Sync,
T: Send
{
self.into_par_iter()
.fold(identity.clone(), move |accumulator, ($($p,)*)| {
fold(accumulator, $($p),*)
})
.reduce(identity, reduce)
}
);
}
)+
}
}
zip_impl! {
[true P1],
[true P1 P2],
[true P1 P2 P3],
[true P1 P2 P3 P4],
[true P1 P2 P3 P4 P5],
[false P1 P2 P3 P4 P5 P6],
}