near_sdk/store/unordered_set/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
// This suppresses the depreciation warnings for uses of UnorderedSet in this module
#![allow(deprecated)]
mod impls;
mod iter;
pub use self::iter::{Difference, Drain, Intersection, Iter, SymmetricDifference, Union};
use super::{FreeList, LookupMap, ERR_INCONSISTENT_STATE};
use crate::store::free_list::FreeListIndex;
use crate::store::key::{Sha256, ToKey};
use crate::{env, IntoStorageKey};
use borsh::{BorshDeserialize, BorshSerialize};
use near_sdk_macros::near;
use std::borrow::Borrow;
use std::fmt;
/// A lazily loaded storage set that stores its content directly on the storage trie.
/// This structure is similar to [`near_sdk::store::LookupSet`](crate::store::LookupSet), except
/// that it keeps track of the elements so that [`UnorderedSet`] can be iterable among other things.
///
/// As with the [`LookupSet`] type, an `UnorderedSet` requires that the elements
/// implement the [`BorshSerialize`] and [`Ord`] traits. This can frequently be achieved by
/// using `#[derive(BorshSerialize, Ord)]`. Some functions also require elements to implement the
/// [`BorshDeserialize`] trait.
///
/// This set stores the values under a hash of the set's `prefix` and [`BorshSerialize`] of the
/// element using the set's [`ToKey`] implementation.
///
/// The default hash function for [`UnorderedSet`] is [`Sha256`] which uses a syscall
/// (or host function) built into the NEAR runtime to hash the element. To use a custom function,
/// use [`with_hasher`]. Alternative builtin hash functions can be found at
/// [`near_sdk::store::key`](crate::store::key).
///
/// # Performance considerations
/// Note that this collection is optimized for fast removes at the expense of key management.
/// If the amount of removes is significantly higher than the amount of inserts the iteration
/// becomes more costly. See [`remove`](UnorderedSet::remove) for details.
/// If this is the use-case - see ['IterableSet`](crate::store::IterableSet).
///
/// # Examples
///
/// ```
/// use near_sdk::store::UnorderedSet;
///
/// // Initializes a set, the generic types can be inferred to `UnorderedSet<String, Sha256>`
/// // The `b"a"` parameter is a prefix for the storage keys of this data structure.
/// let mut set = UnorderedSet::new(b"a");
///
/// set.insert("test".to_string());
/// assert!(set.contains("test"));
/// assert!(set.remove("test"));
/// ```
///
/// [`UnorderedSet`] also implements various binary operations, which allow
/// for iterating various combinations of two sets.
///
/// ```
/// use near_sdk::store::UnorderedSet;
/// use std::collections::HashSet;
///
/// let mut set1 = UnorderedSet::new(b"m");
/// set1.insert(1);
/// set1.insert(2);
/// set1.insert(3);
///
/// let mut set2 = UnorderedSet::new(b"n");
/// set2.insert(2);
/// set2.insert(3);
/// set2.insert(4);
///
/// assert_eq!(
/// set1.union(&set2).collect::<HashSet<_>>(),
/// [1, 2, 3, 4].iter().collect()
/// );
/// assert_eq!(
/// set1.intersection(&set2).collect::<HashSet<_>>(),
/// [2, 3].iter().collect()
/// );
/// assert_eq!(
/// set1.difference(&set2).collect::<HashSet<_>>(),
/// [1].iter().collect()
/// );
/// assert_eq!(
/// set1.symmetric_difference(&set2).collect::<HashSet<_>>(),
/// [1, 4].iter().collect()
/// );
/// ```
///
/// [`with_hasher`]: Self::with_hasher
/// [`LookupSet`]: crate::store::LookupSet
#[near(inside_nearsdk)]
#[deprecated(
since = "5.0.0",
note = "Suboptimal iteration performance. See performance considerations doc for details. Consider using IterableSet instead (WARNING: manual storage migration is required if contract was previously deployed)"
)]
pub struct UnorderedSet<T, H = Sha256>
where
T: BorshSerialize + Ord,
H: ToKey,
{
// ser/de is independent of `T` ser/de, `BorshSerialize`/`BorshDeserialize`/`BorshSchema` bounds removed
#[cfg_attr(not(feature = "abi"), borsh(bound(serialize = "", deserialize = "")))]
#[cfg_attr(
feature = "abi",
borsh(bound(serialize = "", deserialize = ""), schema(params = ""))
)]
elements: FreeList<T>,
// ser/de is independent of `T`, `H` ser/de, `BorshSerialize`/`BorshDeserialize`/`BorshSchema` bounds removed
#[cfg_attr(not(feature = "abi"), borsh(bound(serialize = "", deserialize = "")))]
#[cfg_attr(
feature = "abi",
borsh(bound(serialize = "", deserialize = ""), schema(params = ""))
)]
index: LookupMap<T, FreeListIndex, H>,
}
impl<T, H> Drop for UnorderedSet<T, H>
where
T: BorshSerialize + Ord,
H: ToKey,
{
fn drop(&mut self) {
self.flush()
}
}
impl<T, H> fmt::Debug for UnorderedSet<T, H>
where
T: BorshSerialize + Ord + BorshDeserialize + fmt::Debug,
H: ToKey,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("UnorderedSet")
.field("elements", &self.elements)
.field("index", &self.index)
.finish()
}
}
impl<T> UnorderedSet<T, Sha256>
where
T: BorshSerialize + Ord,
{
/// Create a new iterable set. Use `prefix` as a unique prefix for keys.
///
/// This prefix can be anything that implements [`IntoStorageKey`]. The prefix is used when
/// storing and looking up values in storage to ensure no collisions with other collections.
///
/// # Examples
///
/// ```
/// use near_sdk::store::UnorderedSet;
///
/// let mut map: UnorderedSet<String> = UnorderedSet::new(b"b");
/// ```
#[inline]
pub fn new<S>(prefix: S) -> Self
where
S: IntoStorageKey,
{
Self::with_hasher(prefix)
}
}
impl<T, H> UnorderedSet<T, H>
where
T: BorshSerialize + Ord,
H: ToKey,
{
/// Initialize a [`UnorderedSet`] with a custom hash function.
///
/// # Example
/// ```
/// use near_sdk::store::key::Keccak256;
/// use near_sdk::store::UnorderedSet;
///
/// let map = UnorderedSet::<String, Keccak256>::with_hasher(b"m");
/// ```
pub fn with_hasher<S>(prefix: S) -> Self
where
S: IntoStorageKey,
{
let mut vec_key = prefix.into_storage_key();
let map_key = [vec_key.as_slice(), b"m"].concat();
vec_key.push(b'v');
Self { elements: FreeList::new(vec_key), index: LookupMap::with_hasher(map_key) }
}
/// Returns the number of elements in the set.
pub fn len(&self) -> u32 {
self.elements.len()
}
/// Returns true if the set contains no elements.
pub fn is_empty(&self) -> bool {
self.elements.is_empty()
}
/// Clears the set, removing all values.
pub fn clear(&mut self)
where
T: BorshDeserialize + Clone,
{
for e in self.elements.drain() {
self.index.set(e, None);
}
}
/// Visits the values representing the difference, i.e., the values that are in `self` but not
/// in `other`.
///
/// # Examples
///
/// ```
/// use near_sdk::store::UnorderedSet;
///
/// let mut set1 = UnorderedSet::new(b"m");
/// set1.insert("a".to_string());
/// set1.insert("b".to_string());
/// set1.insert("c".to_string());
///
/// let mut set2 = UnorderedSet::new(b"n");
/// set2.insert("b".to_string());
/// set2.insert("c".to_string());
/// set2.insert("d".to_string());
///
/// // Can be seen as `set1 - set2`.
/// for x in set1.difference(&set2) {
/// println!("{}", x); // Prints "a"
/// }
/// ```
pub fn difference<'a>(&'a self, other: &'a UnorderedSet<T, H>) -> Difference<'a, T, H>
where
T: BorshDeserialize,
{
Difference::new(self, other)
}
/// Visits the values representing the symmetric difference, i.e., the values that are in
/// `self` or in `other` but not in both.
///
/// # Examples
///
/// ```
/// use near_sdk::store::UnorderedSet;
///
/// let mut set1 = UnorderedSet::new(b"m");
/// set1.insert("a".to_string());
/// set1.insert("b".to_string());
/// set1.insert("c".to_string());
///
/// let mut set2 = UnorderedSet::new(b"n");
/// set2.insert("b".to_string());
/// set2.insert("c".to_string());
/// set2.insert("d".to_string());
///
/// // Prints "a", "d" in arbitrary order.
/// for x in set1.symmetric_difference(&set2) {
/// println!("{}", x);
/// }
/// ```
pub fn symmetric_difference<'a>(
&'a self,
other: &'a UnorderedSet<T, H>,
) -> SymmetricDifference<'a, T, H>
where
T: BorshDeserialize + Clone,
{
SymmetricDifference::new(self, other)
}
/// Visits the values representing the intersection, i.e., the values that are both in `self`
/// and `other`.
///
/// # Examples
///
/// ```
/// use near_sdk::store::UnorderedSet;
///
/// let mut set1 = UnorderedSet::new(b"m");
/// set1.insert("a".to_string());
/// set1.insert("b".to_string());
/// set1.insert("c".to_string());
///
/// let mut set2 = UnorderedSet::new(b"n");
/// set2.insert("b".to_string());
/// set2.insert("c".to_string());
/// set2.insert("d".to_string());
///
/// // Prints "b", "c" in arbitrary order.
/// for x in set1.intersection(&set2) {
/// println!("{}", x);
/// }
/// ```
pub fn intersection<'a>(&'a self, other: &'a UnorderedSet<T, H>) -> Intersection<'a, T, H>
where
T: BorshDeserialize,
{
Intersection::new(self, other)
}
/// Visits the values representing the union, i.e., all the values in `self` or `other`, without
/// duplicates.
///
/// # Examples
///
/// ```
/// use near_sdk::store::UnorderedSet;
///
/// let mut set1 = UnorderedSet::new(b"m");
/// set1.insert("a".to_string());
/// set1.insert("b".to_string());
/// set1.insert("c".to_string());
///
/// let mut set2 = UnorderedSet::new(b"n");
/// set2.insert("b".to_string());
/// set2.insert("c".to_string());
/// set2.insert("d".to_string());
///
/// // Prints "a", "b", "c", "d" in arbitrary order.
/// for x in set1.union(&set2) {
/// println!("{}", x);
/// }
/// ```
pub fn union<'a>(&'a self, other: &'a UnorderedSet<T, H>) -> Union<'a, T, H>
where
T: BorshDeserialize + Clone,
{
Union::new(self, other)
}
/// Returns `true` if `self` has no elements in common with `other`. This is equivalent to
/// checking for an empty intersection.
///
/// # Examples
///
/// ```
/// use near_sdk::store::UnorderedSet;
///
/// let mut set1 = UnorderedSet::new(b"m");
/// set1.insert("a".to_string());
/// set1.insert("b".to_string());
/// set1.insert("c".to_string());
///
/// let mut set2 = UnorderedSet::new(b"n");
///
/// assert_eq!(set1.is_disjoint(&set2), true);
/// set2.insert("d".to_string());
/// assert_eq!(set1.is_disjoint(&set2), true);
/// set2.insert("a".to_string());
/// assert_eq!(set1.is_disjoint(&set2), false);
/// ```
pub fn is_disjoint(&self, other: &UnorderedSet<T, H>) -> bool
where
T: BorshDeserialize + Clone,
{
if self.len() <= other.len() {
self.iter().all(|v| !other.contains(v))
} else {
other.iter().all(|v| !self.contains(v))
}
}
/// Returns `true` if the set is a subset of another, i.e., `other` contains at least all the
/// values in `self`.
///
/// # Examples
///
/// ```
/// use near_sdk::store::UnorderedSet;
///
/// let mut sup = UnorderedSet::new(b"m");
/// sup.insert("a".to_string());
/// sup.insert("b".to_string());
/// sup.insert("c".to_string());
///
/// let mut set = UnorderedSet::new(b"n");
///
/// assert_eq!(set.is_subset(&sup), true);
/// set.insert("b".to_string());
/// assert_eq!(set.is_subset(&sup), true);
/// set.insert("d".to_string());
/// assert_eq!(set.is_subset(&sup), false);
/// ```
pub fn is_subset(&self, other: &UnorderedSet<T, H>) -> bool
where
T: BorshDeserialize + Clone,
{
if self.len() <= other.len() {
self.iter().all(|v| other.contains(v))
} else {
false
}
}
/// Returns `true` if the set is a superset of another, i.e., `self` contains at least all the
/// values in `other`.
///
/// # Examples
///
/// ```
/// use near_sdk::store::UnorderedSet;
///
/// let mut sub = UnorderedSet::new(b"m");
/// sub.insert("a".to_string());
/// sub.insert("b".to_string());
///
/// let mut set = UnorderedSet::new(b"n");
///
/// assert_eq!(set.is_superset(&sub), false);
/// set.insert("b".to_string());
/// set.insert("d".to_string());
/// assert_eq!(set.is_superset(&sub), false);
/// set.insert("a".to_string());
/// assert_eq!(set.is_superset(&sub), true);
/// ```
pub fn is_superset(&self, other: &UnorderedSet<T, H>) -> bool
where
T: BorshDeserialize + Clone,
{
other.is_subset(self)
}
/// An iterator visiting all elements in arbitrary order.
/// The iterator element type is `&'a T`.
///
/// # Examples
///
/// ```
/// use near_sdk::store::UnorderedSet;
///
/// let mut set = UnorderedSet::new(b"m");
/// set.insert("a".to_string());
/// set.insert("b".to_string());
/// set.insert("c".to_string());
///
/// for val in set.iter() {
/// println!("val: {}", val);
/// }
/// ```
pub fn iter(&self) -> Iter<T>
where
T: BorshDeserialize,
{
Iter::new(self)
}
/// Clears the set, returning all elements in an iterator.
///
/// # Examples
///
/// ```
/// use near_sdk::store::UnorderedSet;
///
/// let mut a = UnorderedSet::new(b"m");
/// a.insert(1);
/// a.insert(2);
///
/// for v in a.drain().take(1) {
/// assert!(v == 1 || v == 2);
/// }
///
/// assert!(a.is_empty());
/// ```
pub fn drain(&mut self) -> Drain<T, H>
where
T: BorshDeserialize,
{
Drain::new(self)
}
/// Returns `true` if the set contains the specified value.
///
/// The value may be any borrowed form of the set's value type, but
/// [`BorshSerialize`], [`ToOwned<Owned = T>`](ToOwned) and [`Ord`] on the borrowed form *must*
/// match those for the value type.
pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool
where
T: Borrow<Q>,
Q: BorshSerialize + ToOwned<Owned = T> + Ord,
{
self.index.contains_key(value)
}
/// Adds a value to the set.
///
/// If the set did not have this value present, true is returned.
///
/// If the set did have this value present, false is returned.
pub fn insert(&mut self, value: T) -> bool
where
T: Clone + BorshDeserialize,
{
let entry = self.index.get_mut_inner(&value);
if entry.value_mut().is_some() {
false
} else {
let element_index = self.elements.insert(value);
entry.replace(Some(element_index));
true
}
}
/// Removes a value from the set. Returns whether the value was present in the set.
///
/// The value may be any borrowed form of the set's value type, but
/// [`BorshSerialize`], [`ToOwned<Owned = K>`](ToOwned) and [`Ord`] on the borrowed form *must*
/// match those for the value type.
///
/// # Performance
///
/// When elements are removed, the underlying vector of values isn't
/// rearranged; instead, the removed value is replaced with a placeholder value. These
/// empty slots are reused on subsequent [`insert`](Self::insert) operations.
///
/// In cases where there are a lot of removals and not a lot of insertions, these leftover
/// placeholders might make iteration more costly, driving higher gas costs. If you need to
/// remedy this, take a look at [`defrag`](Self::defrag).
pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool
where
T: Borrow<Q> + BorshDeserialize,
Q: BorshSerialize + ToOwned<Owned = T> + Ord,
{
match self.index.remove(value) {
Some(element_index) => {
self.elements
.remove(element_index)
.unwrap_or_else(|| env::panic_str(ERR_INCONSISTENT_STATE));
true
}
None => false,
}
}
/// Flushes the intermediate values of the map before this is called when the structure is
/// [`Drop`]ed. This will write all modified values to storage but keep all cached values
/// in memory.
pub fn flush(&mut self) {
self.elements.flush();
self.index.flush();
}
}
impl<T, H> UnorderedSet<T, H>
where
T: BorshSerialize + BorshDeserialize + Ord,
H: ToKey,
{
/// Remove empty placeholders leftover from calling [`remove`](Self::remove).
///
/// When elements are removed using [`remove`](Self::remove), the underlying vector isn't
/// rearranged; instead, the removed element is replaced with a placeholder value. These
/// empty slots are reused on subsequent [`insert`](Self::insert) operations.
///
/// In cases where there are a lot of removals and not a lot of insertions, these leftover
/// placeholders might make iteration more costly, driving higher gas costs. This method is meant
/// to remedy that by removing all empty slots from the underlying vector and compacting it.
///
/// Note that this might exceed the available gas amount depending on the amount of free slots,
/// therefore has to be used with caution.
///
/// # Examples
///
/// ```
/// use near_sdk::store::UnorderedSet;
///
/// let mut set = UnorderedSet::new(b"b");
///
/// for i in 0..4 {
/// set.insert(i);
/// }
///
/// set.remove(&1);
/// set.remove(&3);
///
/// set.defrag();
/// ```
pub fn defrag(&mut self) {
self.elements.defrag(|_, _| {});
}
}
#[cfg(not(target_arch = "wasm32"))]
#[cfg(test)]
mod tests {
use crate::store::free_list::FreeListIndex;
use crate::store::UnorderedSet;
use crate::test_utils::test_env::setup_free;
use arbitrary::{Arbitrary, Unstructured};
use borsh::{to_vec, BorshDeserialize};
use rand::RngCore;
use rand::SeedableRng;
use std::collections::HashSet;
#[test]
fn basic_functionality() {
let mut set = UnorderedSet::new(b"b");
assert!(set.is_empty());
assert!(set.insert("test".to_string()));
assert!(set.contains("test"));
assert_eq!(set.len(), 1);
assert!(set.remove("test"));
assert_eq!(set.len(), 0);
}
#[test]
fn set_iterator() {
let mut set = UnorderedSet::new(b"b");
set.insert(0u8);
set.insert(1);
set.insert(2);
set.insert(3);
set.remove(&1);
let iter = set.iter();
assert_eq!(iter.len(), 3);
assert_eq!(iter.collect::<Vec<_>>(), [(&0), (&2), (&3)]);
let mut iter = set.iter();
assert_eq!(iter.nth(2), Some(&3));
// Check fused iterator assumption that each following one will be None
assert_eq!(iter.next(), None);
// Drain
assert_eq!(set.drain().collect::<Vec<_>>(), [0, 2, 3]);
assert!(set.is_empty());
}
#[test]
fn test_drain() {
let mut s = UnorderedSet::new(b"m");
s.extend(1..100);
// Drain the set a few times to make sure that it does have any random residue
for _ in 0..20 {
assert_eq!(s.len(), 99);
for _ in s.drain() {}
#[allow(clippy::never_loop)]
for _ in &s {
panic!("s should be empty!");
}
assert_eq!(s.len(), 0);
assert!(s.is_empty());
s.extend(1..100);
}
}
#[test]
fn test_extend() {
let mut a = UnorderedSet::<u64>::new(b"m");
a.insert(1);
a.extend([2, 3, 4]);
assert_eq!(a.len(), 4);
assert!(a.contains(&1));
assert!(a.contains(&2));
assert!(a.contains(&3));
assert!(a.contains(&4));
}
#[test]
fn test_difference() {
let mut set1 = UnorderedSet::new(b"m");
set1.insert("a".to_string());
set1.insert("b".to_string());
set1.insert("c".to_string());
set1.insert("d".to_string());
let mut set2 = UnorderedSet::new(b"n");
set2.insert("b".to_string());
set2.insert("c".to_string());
set2.insert("e".to_string());
assert_eq!(
set1.difference(&set2).collect::<HashSet<_>>(),
["a".to_string(), "d".to_string()].iter().collect::<HashSet<_>>()
);
assert_eq!(
set2.difference(&set1).collect::<HashSet<_>>(),
["e".to_string()].iter().collect::<HashSet<_>>()
);
assert!(set1.difference(&set2).nth(1).is_some());
assert!(set1.difference(&set2).nth(2).is_none());
}
#[test]
fn test_difference_empty() {
let mut set1 = UnorderedSet::new(b"m");
set1.insert(1);
set1.insert(2);
set1.insert(3);
let mut set2 = UnorderedSet::new(b"n");
set2.insert(3);
set2.insert(1);
set2.insert(2);
set2.insert(4);
assert_eq!(set1.difference(&set2).collect::<HashSet<_>>(), HashSet::new());
}
#[test]
fn test_symmetric_difference() {
let mut set1 = UnorderedSet::new(b"m");
set1.insert("a".to_string());
set1.insert("b".to_string());
set1.insert("c".to_string());
let mut set2 = UnorderedSet::new(b"n");
set2.insert("b".to_string());
set2.insert("c".to_string());
set2.insert("d".to_string());
assert_eq!(
set1.symmetric_difference(&set2).collect::<HashSet<_>>(),
["a".to_string(), "d".to_string()].iter().collect::<HashSet<_>>()
);
assert_eq!(
set2.symmetric_difference(&set1).collect::<HashSet<_>>(),
["a".to_string(), "d".to_string()].iter().collect::<HashSet<_>>()
);
}
#[test]
fn test_symmetric_difference_empty() {
let mut set1 = UnorderedSet::new(b"m");
set1.insert(1);
set1.insert(2);
set1.insert(3);
let mut set2 = UnorderedSet::new(b"n");
set2.insert(3);
set2.insert(1);
set2.insert(2);
assert_eq!(set1.symmetric_difference(&set2).collect::<HashSet<_>>(), HashSet::new());
}
#[test]
fn test_intersection() {
let mut set1 = UnorderedSet::new(b"m");
set1.insert("a".to_string());
set1.insert("b".to_string());
set1.insert("c".to_string());
let mut set2 = UnorderedSet::new(b"n");
set2.insert("b".to_string());
set2.insert("c".to_string());
set2.insert("d".to_string());
assert_eq!(
set1.intersection(&set2).collect::<HashSet<_>>(),
["b".to_string(), "c".to_string()].iter().collect::<HashSet<_>>()
);
assert_eq!(
set2.intersection(&set1).collect::<HashSet<_>>(),
["b".to_string(), "c".to_string()].iter().collect::<HashSet<_>>()
);
assert!(set1.intersection(&set2).nth(1).is_some());
assert!(set1.intersection(&set2).nth(2).is_none());
}
#[test]
fn test_intersection_empty() {
let mut set1 = UnorderedSet::new(b"m");
set1.insert(1);
set1.insert(2);
set1.insert(3);
let mut set2 = UnorderedSet::new(b"n");
set2.insert(4);
set2.insert(6);
set2.insert(5);
assert_eq!(set1.intersection(&set2).collect::<HashSet<_>>(), HashSet::new());
}
#[test]
fn test_union() {
let mut set1 = UnorderedSet::new(b"m");
set1.insert("a".to_string());
set1.insert("b".to_string());
set1.insert("c".to_string());
let mut set2 = UnorderedSet::new(b"n");
set2.insert("b".to_string());
set2.insert("c".to_string());
set2.insert("d".to_string());
assert_eq!(
set1.union(&set2).collect::<HashSet<_>>(),
["a".to_string(), "b".to_string(), "c".to_string(), "d".to_string()]
.iter()
.collect::<HashSet<_>>()
);
assert_eq!(
set2.union(&set1).collect::<HashSet<_>>(),
["a".to_string(), "b".to_string(), "c".to_string(), "d".to_string()]
.iter()
.collect::<HashSet<_>>()
);
}
#[test]
fn test_union_empty() {
let set1 = UnorderedSet::<u64>::new(b"m");
let set2 = UnorderedSet::<u64>::new(b"n");
assert_eq!(set1.union(&set2).collect::<HashSet<_>>(), HashSet::new());
}
#[test]
fn test_subset_and_superset() {
let mut a = UnorderedSet::new(b"m");
assert!(a.insert(0));
assert!(a.insert(50));
assert!(a.insert(110));
assert!(a.insert(70));
let mut b = UnorderedSet::new(b"n");
assert!(b.insert(0));
assert!(b.insert(70));
assert!(b.insert(190));
assert!(b.insert(2500));
assert!(b.insert(110));
assert!(b.insert(2000));
assert!(!a.is_subset(&b));
assert!(!a.is_superset(&b));
assert!(!b.is_subset(&a));
assert!(!b.is_superset(&a));
assert!(b.insert(50));
assert!(a.is_subset(&b));
assert!(!a.is_superset(&b));
assert!(!b.is_subset(&a));
assert!(b.is_superset(&a));
}
#[test]
fn test_disjoint() {
let mut xs = UnorderedSet::new(b"m");
let mut ys = UnorderedSet::new(b"n");
assert!(xs.is_disjoint(&ys));
assert!(ys.is_disjoint(&xs));
assert!(xs.insert(50));
assert!(ys.insert(110));
assert!(xs.is_disjoint(&ys));
assert!(ys.is_disjoint(&xs));
assert!(xs.insert(70));
assert!(xs.insert(190));
assert!(xs.insert(40));
assert!(ys.insert(20));
assert!(ys.insert(-110));
assert!(xs.is_disjoint(&ys));
assert!(ys.is_disjoint(&xs));
assert!(ys.insert(70));
assert!(!xs.is_disjoint(&ys));
assert!(!ys.is_disjoint(&xs));
}
#[derive(Arbitrary, Debug)]
enum Op {
Insert(u8),
Remove(u8),
Flush,
Restore,
Contains(u8),
}
#[test]
fn arbitrary() {
setup_free();
let mut rng = rand_xorshift::XorShiftRng::seed_from_u64(0);
let mut buf = vec![0; 4096];
for _ in 0..512 {
// Clear storage in-between runs
crate::mock::with_mocked_blockchain(|b| b.take_storage());
rng.fill_bytes(&mut buf);
let mut us = UnorderedSet::new(b"l");
let mut hs = HashSet::new();
let u = Unstructured::new(&buf);
if let Ok(ops) = Vec::<Op>::arbitrary_take_rest(u) {
for op in ops {
match op {
Op::Insert(v) => {
let r1 = us.insert(v);
let r2 = hs.insert(v);
assert_eq!(r1, r2)
}
Op::Remove(v) => {
let r1 = us.remove(&v);
let r2 = hs.remove(&v);
assert_eq!(r1, r2)
}
Op::Flush => {
us.flush();
}
Op::Restore => {
let serialized = to_vec(&us).unwrap();
us = UnorderedSet::deserialize(&mut serialized.as_slice()).unwrap();
}
Op::Contains(v) => {
let r1 = us.contains(&v);
let r2 = hs.contains(&v);
assert_eq!(r1, r2)
}
}
}
}
}
}
#[test]
fn defrag() {
let mut set = UnorderedSet::new(b"b");
let all_values = 0..=8;
for i in all_values {
set.insert(i);
}
let removed = [2, 4, 6];
let existing = [0, 1, 3, 5, 7, 8];
for id in removed {
set.remove(&id);
}
set.defrag();
for i in removed {
assert!(!set.contains(&i));
}
for i in existing {
assert!(set.contains(&i));
}
// Check that 8 and 7 moved from the front of the list to the smallest removed indices that
// correspond to removed values.
assert_eq!(*set.elements.get(FreeListIndex(2)).unwrap(), 8);
assert_eq!(*set.elements.get(FreeListIndex(4)).unwrap(), 7);
// Check the last removed value.
assert_eq!(set.elements.get(FreeListIndex(6)), None);
}
#[cfg(feature = "abi")]
#[test]
fn test_borsh_schema() {
#[derive(
borsh::BorshSerialize, borsh::BorshDeserialize, PartialEq, Eq, PartialOrd, Ord,
)]
struct NoSchemaStruct;
assert_eq!(
"UnorderedSet".to_string(),
<UnorderedSet<NoSchemaStruct> as borsh::BorshSchema>::declaration()
);
let mut defs = Default::default();
<UnorderedSet<NoSchemaStruct> as borsh::BorshSchema>::add_definitions_recursively(
&mut defs,
);
insta::assert_snapshot!(format!("{:#?}", defs));
}
}