1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
// SPDX-License-Identifier: MIT
//! `netlink-proto` is an asynchronous implementation of the Netlink
//! protocol.
//!
//! # Example: listening for audit events
//!
//! This example shows how to use `netlink-proto` with the `tokio`
//! runtime to print audit events. It requires extra external
//! dependencies:
//!
//! - `futures = "^0.3"`
//! - `tokio = "^1.0"`
//! - `netlink-packet-audit = "^0.1"`
//!
//! ```rust,no_run
//! use futures::stream::StreamExt;
//! use netlink_packet_core::{NetlinkMessage, NetlinkPayload, NLM_F_ACK,
//! NLM_F_REQUEST};
//! use netlink_packet_audit::{
//! AuditMessage,
//! StatusMessage,
//! };
//! use std::process;
//!
//! use netlink_proto::{
//! new_connection,
//! sys::{protocols::NETLINK_AUDIT, SocketAddr},
//! };
//!
//! const AUDIT_STATUS_ENABLED: u32 = 1;
//! const AUDIT_STATUS_PID: u32 = 4;
//!
//! #[tokio::main]
//! async fn main() -> Result<(), String> {
//! // Create a netlink socket. Here:
//! //
//! // - `conn` is a `Connection` that has the netlink socket. It's a
//! // `Future` that keeps polling the socket and must be spawned an
//! // the event loop.
//! //
//! // - `handle` is a `Handle` to the `Connection`. We use it to send
//! // netlink messages and receive responses to these messages.
//! //
//! // - `messages` is a channel receiver through which we receive
//! // messages that we have not solicited, ie that are not
//! // response to a request we made. In this example, we'll receive
//! // the audit event through that channel.
//! let (conn, mut handle, mut messages) = new_connection(NETLINK_AUDIT)
//! .map_err(|e| format!("Failed to create a new netlink connection: {}", e))?;
//!
//! // Spawn the `Connection` so that it starts polling the netlink
//! // socket in the background.
//! tokio::spawn(conn);
//!
//! // Use the `ConnectionHandle` to send a request to the kernel
//! // asking it to start multicasting audit event messages.
//! tokio::spawn(async move {
//! // Craft the packet to enable audit events
//! let mut status = StatusMessage::new();
//! status.enabled = 1;
//! status.pid = process::id();
//! status.mask = AUDIT_STATUS_ENABLED | AUDIT_STATUS_PID;
//! let payload = AuditMessage::SetStatus(status);
//! let mut nl_msg = NetlinkMessage::from(payload);
//! nl_msg.header.flags = NLM_F_REQUEST | NLM_F_ACK;
//!
//! // We'll send unicast messages to the kernel.
//! let kernel_unicast: SocketAddr = SocketAddr::new(0, 0);
//! let mut response = match handle.request(nl_msg, kernel_unicast) {
//! Ok(response) => response,
//! Err(e) => {
//! eprintln!("{}", e);
//! return;
//! }
//! };
//!
//! while let Some(message) = response.next().await {
//! if let NetlinkPayload::Error(err_message) = message.payload {
//! eprintln!("Received an error message: {:?}", err_message);
//! return;
//! }
//! }
//! });
//!
//! // Finally, start receiving event through the `messages` channel.
//! println!("Starting to print audit events... press ^C to interrupt");
//! while let Some((message, _addr)) = messages.next().await {
//! if let NetlinkPayload::Error(err_message) = message.payload {
//! eprintln!("received an error message: {:?}", err_message);
//! } else {
//! println!("{:?}", message);
//! }
//! }
//!
//! Ok(())
//! }
//! ```
//!
//! # Example: dumping all the machine's links
//!
//! This example shows how to use `netlink-proto` with the ROUTE
//! protocol.
//!
//! Here we do not use `netlink_proto::new_connection()`, and instead
//! create the socket manually and use call `send()` and `receive()`
//! directly. In the previous example, the `NetlinkFramed` was wrapped
//! in a `Connection` which was polled automatically by the runtime.
//!
//! ```rust,no_run
//! use futures::StreamExt;
//!
//! use netlink_packet_route::{link::LinkMessage, RouteNetlinkMessage};
//! use netlink_packet_core::{
//! NetlinkHeader,
//! NetlinkMessage,
//! NLM_F_REQUEST, NLM_F_DUMP
//! };
//!
//! use netlink_proto::{
//! new_connection,
//! sys::{protocols::NETLINK_ROUTE, SocketAddr},
//! };
//!
//! #[tokio::main]
//! async fn main() -> Result<(), String> {
//! // Create the netlink socket. Here, we won't use the channel that
//! // receives unsolicited messages.
//! let (conn, mut handle, _) = new_connection(NETLINK_ROUTE)
//! .map_err(|e| format!("Failed to create a new netlink connection: {}", e))?;
//!
//! // Spawn the `Connection` in the background
//! tokio::spawn(conn);
//!
//! // Create the netlink message that requests the links to be dumped
//! let mut nl_hdr = NetlinkHeader::default();
//! nl_hdr.flags = NLM_F_DUMP | NLM_F_REQUEST;
//!
//! let msg = NetlinkMessage::new(
//! nl_hdr,
//! RouteNetlinkMessage::GetLink(LinkMessage::default()).into(),
//! );
//!
//! // Send the request
//! let mut response = handle
//! .request(msg, SocketAddr::new(0, 0))
//! .map_err(|e| format!("Failed to send request: {}", e))?;
//!
//! // Print all the messages received in response
//! loop {
//! if let Some(packet) = response.next().await {
//! println!("<<< {:?}", packet);
//! } else {
//! break;
//! }
//! }
//!
//! Ok(())
//! }
//! ```
#[macro_use]
extern crate futures;
#[macro_use]
extern crate log;
mod codecs;
pub use crate::codecs::*;
mod framed;
pub use crate::framed::*;
mod protocol;
pub(crate) use self::protocol::{Protocol, Response};
pub(crate) type Request<T> = self::protocol::Request<
T,
UnboundedSender<crate::packet::NetlinkMessage<T>>,
>;
mod connection;
pub use crate::connection::*;
mod errors;
pub use crate::errors::*;
mod handle;
pub use crate::handle::*;
use futures::channel::mpsc::{unbounded, UnboundedReceiver, UnboundedSender};
use std::{fmt::Debug, io};
pub(crate) use netlink_packet_core as packet;
pub mod sys {
pub use netlink_sys::{protocols, AsyncSocket, AsyncSocketExt, SocketAddr};
#[cfg(feature = "tokio_socket")]
pub use netlink_sys::TokioSocket;
#[cfg(feature = "smol_socket")]
pub use netlink_sys::SmolSocket;
}
/// Create a new Netlink connection for the given Netlink protocol, and returns
/// a handle to that connection as well as a stream of unsolicited messages
/// received by that connection (unsolicited here means messages that are not a
/// response to a request made by the `Connection`). `Connection<T>` wraps a
/// Netlink socket and implements the Netlink protocol.
///
/// `protocol` must be one of the [`crate::sys::protocols`][protos] constants.
///
/// `T` is the type of netlink messages used for this protocol. For instance, if
/// you're using the `NETLINK_AUDIT` protocol with the `netlink-packet-audit`
/// crate, `T` will be `netlink_packet_audit::AuditMessage`. More generally, `T`
/// is anything that can be serialized and deserialized into a Netlink message.
/// See the `netlink_packet_core` documentation for details about the
/// `NetlinkSerializable` and `NetlinkDeserializable` traits.
///
/// Most of the time, users will want to spawn the `Connection` on an async
/// runtime, and use the handle to send messages.
///
/// [protos]: crate::sys::protocols
#[cfg(feature = "tokio_socket")]
#[allow(clippy::type_complexity)]
pub fn new_connection<T>(
protocol: isize,
) -> io::Result<(
Connection<T>,
ConnectionHandle<T>,
UnboundedReceiver<(packet::NetlinkMessage<T>, sys::SocketAddr)>,
)>
where
T: Debug
+ packet::NetlinkSerializable
+ packet::NetlinkDeserializable
+ Unpin,
{
new_connection_with_codec(protocol)
}
/// Variant of [`new_connection`] that allows specifying a socket type to use
/// for async handling
#[allow(clippy::type_complexity)]
pub fn new_connection_with_socket<T, S>(
protocol: isize,
) -> io::Result<(
Connection<T, S>,
ConnectionHandle<T>,
UnboundedReceiver<(packet::NetlinkMessage<T>, sys::SocketAddr)>,
)>
where
T: Debug
+ packet::NetlinkSerializable
+ packet::NetlinkDeserializable
+ Unpin,
S: sys::AsyncSocket,
{
new_connection_with_codec(protocol)
}
/// Variant of [`new_connection`] that allows specifying a socket type to use
/// for async handling and a special codec
#[allow(clippy::type_complexity)]
pub fn new_connection_with_codec<T, S, C>(
protocol: isize,
) -> io::Result<(
Connection<T, S, C>,
ConnectionHandle<T>,
UnboundedReceiver<(packet::NetlinkMessage<T>, sys::SocketAddr)>,
)>
where
T: Debug
+ packet::NetlinkSerializable
+ packet::NetlinkDeserializable
+ Unpin,
S: sys::AsyncSocket,
C: NetlinkMessageCodec,
{
let (requests_tx, requests_rx) = unbounded::<Request<T>>();
let (messages_tx, messages_rx) =
unbounded::<(packet::NetlinkMessage<T>, sys::SocketAddr)>();
Ok((
Connection::new(requests_rx, messages_tx, protocol)?,
ConnectionHandle::new(requests_tx),
messages_rx,
))
}