no_std_net/
ip.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
// Effectively all the code in this repo is copied with permission from Rust's std library.
// They hold the copyright (http://rust-lang.org/COPYRIGHT) and whatever other rights, but this
// crate is MIT licensed also, so it's all good.

// Tests for this module
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;

use core::cmp::Ordering;
use core::fmt::{self, Write};
use core::hash;

use super::helper::WriteHelper;

/// An IP address, either IPv4 or IPv6.
///
/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
/// respective documentation for more details.
///
/// # Examples
///
/// ```
/// use no_std_net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
///
/// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4));
/// assert_eq!("::1".parse(), Ok(localhost_v6));
///
/// assert_eq!(localhost_v4.is_ipv6(), false);
/// assert_eq!(localhost_v4.is_ipv4(), true);
/// ```
#[derive(Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
pub enum IpAddr {
    /// An IPv4 address.
    V4(Ipv4Addr),
    /// An IPv6 address.
    V6(Ipv6Addr),
}

/// An IPv4 address.
///
/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
/// They are usually represented as four octets.
///
/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
///
/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
///
/// # Textual representation
///
/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
/// notation, divided by `.` (this is called "dot-decimal notation").
/// Notably, octal numbers and hexadecimal numbers are not allowed per [IETF RFC 6943].
///
/// [IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1
/// [`FromStr`]: core::str::FromStr
///
/// # Examples
///
/// ```
/// use no_std_net::Ipv4Addr;
///
/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
/// assert_eq!("127.0.0.1".parse(), Ok(localhost));
/// assert_eq!(localhost.is_loopback(), true);
/// ```
#[derive(Copy)]
pub struct Ipv4Addr {
    // Octets stored in transmit order.
    inner: [u8; 4],
}

/// An IPv6 address.
///
/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
/// They are usually represented as eight 16-bit segments.
///
/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
///
/// # Textual representation
///
/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
/// an IPv6 address in text, but in general, each segments is written in hexadecimal
/// notation, and segments are separated by `:`. For more information, see
/// [IETF RFC 5952].
///
/// [`FromStr`]: core::str::FromStr
/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
///
/// # Examples
///
/// ```
/// use no_std_net::Ipv6Addr;
///
/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
/// assert_eq!("::1".parse(), Ok(localhost));
/// assert_eq!(localhost.is_loopback(), true);
/// ```
#[derive(Copy)]
pub struct Ipv6Addr {
    // Octets stored in transmit order.
    inner: [u8; 16],
}

#[allow(missing_docs)]
#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
#[cfg(feature = "unstable_ip")]
pub enum Ipv6MulticastScope {
    InterfaceLocal,
    LinkLocal,
    RealmLocal,
    AdminLocal,
    SiteLocal,
    OrganizationLocal,
    Global,
}

impl IpAddr {
    /// Returns [`true`] for the special 'unspecified' address.
    ///
    /// See the documentation for [`Ipv4Addr::is_unspecified()`] and
    /// [`Ipv6Addr::is_unspecified()`] for more details.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{IpAddr, Ipv4Addr, Ipv6Addr};
    ///
    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true);
    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true);
    /// ```
    #[inline]
    pub const fn is_unspecified(&self) -> bool {
        match self {
            IpAddr::V4(ip) => ip.is_unspecified(),
            IpAddr::V6(ip) => ip.is_unspecified(),
        }
    }

    /// Returns [`true`] if this is a loopback address.
    ///
    /// See the documentation for [`Ipv4Addr::is_loopback()`] and
    /// [`Ipv6Addr::is_loopback()`] for more details.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{IpAddr, Ipv4Addr, Ipv6Addr};
    ///
    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true);
    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true);
    /// ```
    #[inline]
    pub const fn is_loopback(&self) -> bool {
        match self {
            IpAddr::V4(ip) => ip.is_loopback(),
            IpAddr::V6(ip) => ip.is_loopback(),
        }
    }

    /// Returns [`true`] if the address appears to be globally routable.
    ///
    /// See the documentation for [`Ipv4Addr::is_global()`] and
    /// [`Ipv6Addr::is_global()`] for more details.
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    ///
    /// use no_std_net::{IpAddr, Ipv4Addr, Ipv6Addr};
    ///
    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true);
    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_global(&self) -> bool {
        match self {
            IpAddr::V4(ip) => ip.is_global(),
            IpAddr::V6(ip) => ip.is_global(),
        }
    }

    /// Returns [`true`] if this is a multicast address.
    ///
    /// See the documentation for [`Ipv4Addr::is_multicast()`] and
    /// [`Ipv6Addr::is_multicast()`] for more details.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{IpAddr, Ipv4Addr, Ipv6Addr};
    ///
    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true);
    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true);
    /// ```
    #[inline]
    pub const fn is_multicast(&self) -> bool {
        match self {
            IpAddr::V4(ip) => ip.is_multicast(),
            IpAddr::V6(ip) => ip.is_multicast(),
        }
    }

    /// Returns [`true`] if this address is in a range designated for documentation.
    ///
    /// See the documentation for [`Ipv4Addr::is_documentation()`] and
    /// [`Ipv6Addr::is_documentation()`] for more details.
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    ///
    /// use no_std_net::{IpAddr, Ipv4Addr, Ipv6Addr};
    ///
    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true);
    /// assert_eq!(
    ///     IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(),
    ///     true
    /// );
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_documentation(&self) -> bool {
        match self {
            IpAddr::V4(ip) => ip.is_documentation(),
            IpAddr::V6(ip) => ip.is_documentation(),
        }
    }

    /// Returns [`true`] if this address is an [`IPv4` address], and [`false`]
    /// otherwise.
    ///
    /// [`IPv4` address]: IpAddr::V4
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{IpAddr, Ipv4Addr, Ipv6Addr};
    ///
    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true);
    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false);
    /// ```
    #[inline]
    pub const fn is_ipv4(&self) -> bool {
        matches!(self, IpAddr::V4(_))
    }

    /// Returns [`true`] if this address is an [`IPv6` address], and [`false`]
    /// otherwise.
    ///
    /// [`IPv6` address]: IpAddr::V6
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{IpAddr, Ipv4Addr, Ipv6Addr};
    ///
    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false);
    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true);
    /// ```
    #[inline]
    pub const fn is_ipv6(&self) -> bool {
        matches!(self, IpAddr::V6(_))
    }
}

impl Ipv4Addr {
    /// Creates a new IPv4 address from four eight-bit octets.
    ///
    /// The result will represent the IP address `a`.`b`.`c`.`d`.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
    /// ```
    #[inline]
    pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
        Ipv4Addr {
            inner: [a, b, c, d],
        }
    }

    /// An IPv4 address with the address pointing to localhost: `127.0.0.1`
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// let addr = Ipv4Addr::LOCALHOST;
    /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
    /// ```
    pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);

    /// An IPv4 address representing an unspecified address: `0.0.0.0`
    ///
    /// This corresponds to the constant `INADDR_ANY` in other languages.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// let addr = Ipv4Addr::UNSPECIFIED;
    /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
    /// ```
    #[doc(alias = "INADDR_ANY")]
    pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);

    /// An IPv4 address representing the broadcast address: `255.255.255.255`
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// let addr = Ipv4Addr::BROADCAST;
    /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
    /// ```
    pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);

    /// Returns the four eight-bit integers that make up this address.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
    /// assert_eq!(addr.octets(), [127, 0, 0, 1]);
    /// ```
    #[inline]
    pub const fn octets(&self) -> [u8; 4] {
        self.inner
    }

    /// Returns [`true`] for the special 'unspecified' address (`0.0.0.0`).
    ///
    /// This property is defined in _UNIX Network Programming, Second Edition_,
    /// W. Richard Stevens, p. 891; see also [ip7].
    ///
    /// [ip7]: http://man7.org/linux/man-pages/man7/ip.7.html
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
    /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
    /// ```
    #[inline]
    pub const fn is_unspecified(&self) -> bool {
        self.inner[0] == 0 && self.inner[1] == 0 && self.inner[2] == 0 && self.inner[3] == 0
    }

    /// Returns [`true`] if this is a loopback address (`127.0.0.0/8`).
    ///
    /// This property is defined by [IETF RFC 1122].
    ///
    /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
    /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
    /// ```
    #[inline]
    pub const fn is_loopback(&self) -> bool {
        self.octets()[0] == 127
    }

    /// Returns [`true`] if this is a private address.
    ///
    /// The private address ranges are defined in [IETF RFC 1918] and include:
    ///
    ///  - `10.0.0.0/8`
    ///  - `172.16.0.0/12`
    ///  - `192.168.0.0/16`
    ///
    /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
    /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
    /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
    /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
    /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
    /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
    /// ```
    #[inline]
    pub const fn is_private(&self) -> bool {
        match self.octets() {
            [10, ..] => true,
            [172, b, ..] if b >= 16 && b <= 31 => true,
            [192, 168, ..] => true,
            _ => false,
        }
    }

    /// Returns [`true`] if the address is link-local (`169.254.0.0/16`).
    ///
    /// This property is defined by [IETF RFC 3927].
    ///
    /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
    /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
    /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
    /// ```
    #[inline]
    pub const fn is_link_local(&self) -> bool {
        matches!(self.octets(), [169, 254, ..])
    }

    /// Returns [`true`] if the address appears to be globally routable.
    /// See [iana-ipv4-special-registry][ipv4-sr].
    ///
    /// The following return [`false`]:
    ///
    /// - private addresses (see [`Ipv4Addr::is_private()`])
    /// - the loopback address (see [`Ipv4Addr::is_loopback()`])
    /// - the link-local address (see [`Ipv4Addr::is_link_local()`])
    /// - the broadcast address (see [`Ipv4Addr::is_broadcast()`])
    /// - addresses used for documentation (see [`Ipv4Addr::is_documentation()`])
    /// - the unspecified address (see [`Ipv4Addr::is_unspecified()`]), and the whole
    ///   `0.0.0.0/8` block
    /// - addresses reserved for future protocols (see
    /// [`Ipv4Addr::is_ietf_protocol_assignment()`], except
    /// `192.0.0.9/32` and `192.0.0.10/32` which are globally routable
    /// - addresses reserved for future use (see [`Ipv4Addr::is_reserved()`]
    /// - addresses reserved for networking devices benchmarking (see
    /// [`Ipv4Addr::is_benchmarking()`])
    ///
    /// [ipv4-sr]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    ///
    /// use no_std_net::Ipv4Addr;
    ///
    /// // private addresses are not global
    /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
    /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
    ///
    /// // the 0.0.0.0/8 block is not global
    /// assert_eq!(Ipv4Addr::new(0, 1, 2, 3).is_global(), false);
    /// // in particular, the unspecified address is not global
    /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false);
    ///
    /// // the loopback address is not global
    /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_global(), false);
    ///
    /// // link local addresses are not global
    /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);
    ///
    /// // the broadcast address is not global
    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_global(), false);
    ///
    /// // the address space designated for documentation is not global
    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
    /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
    /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);
    ///
    /// // shared addresses are not global
    /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);
    ///
    /// // addresses reserved for protocol assignment are not global
    /// assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_global(), false);
    /// assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_global(), false);
    ///
    /// // addresses reserved for future use are not global
    /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);
    ///
    /// // addresses reserved for network devices benchmarking are not global
    /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);
    ///
    /// // All the other addresses are global
    /// assert_eq!(Ipv4Addr::new(1, 1, 1, 1).is_global(), true);
    /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_global(&self) -> bool {
        // check if this address is 192.0.0.9 or 192.0.0.10. These addresses are the only two
        // globally routable addresses in the 192.0.0.0/24 range.
        if u32::from_be_bytes(self.octets()) == 0xc0000009
            || u32::from_be_bytes(self.octets()) == 0xc000000a
        {
            return true;
        }
        !self.is_private()
            && !self.is_loopback()
            && !self.is_link_local()
            && !self.is_broadcast()
            && !self.is_documentation()
            && !self.is_shared()
            && !self.is_ietf_protocol_assignment()
            && !self.is_reserved()
            && !self.is_benchmarking()
            // Make sure the address is not in 0.0.0.0/8
            && self.octets()[0] != 0
    }

    /// Returns [`true`] if this address is part of the Shared Address Space defined in
    /// [IETF RFC 6598] (`100.64.0.0/10`).
    ///
    /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    /// use no_std_net::Ipv4Addr;
    ///
    /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
    /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
    /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_shared(&self) -> bool {
        self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000)
    }

    /// Returns [`true`] if this address is part of `192.0.0.0/24`, which is reserved to
    /// IANA for IETF protocol assignments, as documented in [IETF RFC 6890].
    ///
    /// Note that parts of this block are in use:
    ///
    /// - `192.0.0.8/32` is the "IPv4 dummy address" (see [IETF RFC 7600])
    /// - `192.0.0.9/32` is the "Port Control Protocol Anycast" (see [IETF RFC 7723])
    /// - `192.0.0.10/32` is used for NAT traversal (see [IETF RFC 8155])
    ///
    /// [IETF RFC 6890]: https://tools.ietf.org/html/rfc6890
    /// [IETF RFC 7600]: https://tools.ietf.org/html/rfc7600
    /// [IETF RFC 7723]: https://tools.ietf.org/html/rfc7723
    /// [IETF RFC 8155]: https://tools.ietf.org/html/rfc8155
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    /// use no_std_net::Ipv4Addr;
    ///
    /// assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_ietf_protocol_assignment(), true);
    /// assert_eq!(Ipv4Addr::new(192, 0, 0, 8).is_ietf_protocol_assignment(), true);
    /// assert_eq!(Ipv4Addr::new(192, 0, 0, 9).is_ietf_protocol_assignment(), true);
    /// assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_ietf_protocol_assignment(), true);
    /// assert_eq!(Ipv4Addr::new(192, 0, 1, 0).is_ietf_protocol_assignment(), false);
    /// assert_eq!(Ipv4Addr::new(191, 255, 255, 255).is_ietf_protocol_assignment(), false);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_ietf_protocol_assignment(&self) -> bool {
        self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0
    }

    /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for
    /// network devices benchmarking. This range is defined in [IETF RFC 2544] as `192.18.0.0`
    /// through `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`.
    ///
    /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
    /// [errata 423]: https://www.rfc-editor.org/errata/eid423
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    /// use no_std_net::Ipv4Addr;
    ///
    /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
    /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
    /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
    /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_benchmarking(&self) -> bool {
        self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18
    }

    /// Returns [`true`] if this address is reserved by IANA for future use. [IETF RFC 1112]
    /// defines the block of reserved addresses as `240.0.0.0/4`. This range normally includes the
    /// broadcast address `255.255.255.255`, but this implementation explicitly excludes it, since
    /// it is obviously not reserved for future use.
    ///
    /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
    ///
    /// # Warning
    ///
    /// As IANA assigns new addresses, this method will be
    /// updated. This may result in non-reserved addresses being
    /// treated as reserved in code that relies on an outdated version
    /// of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    /// use no_std_net::Ipv4Addr;
    ///
    /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);
    ///
    /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
    /// // The broadcast address is not considered as reserved for future use by this implementation
    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_reserved(&self) -> bool {
        self.octets()[0] & 240 == 240 && !self.is_broadcast()
    }

    /// Returns [`true`] if this is a multicast address (`224.0.0.0/4`).
    ///
    /// Multicast addresses have a most significant octet between `224` and `239`,
    /// and is defined by [IETF RFC 5771].
    ///
    /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
    /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
    /// ```
    #[inline]
    pub const fn is_multicast(&self) -> bool {
        self.octets()[0] >= 224 && self.octets()[0] <= 239
    }

    /// Returns [`true`] if this is a broadcast address (`255.255.255.255`).
    ///
    /// A broadcast address has all octets set to `255` as defined in [IETF RFC 919].
    ///
    /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
    /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
    /// ```
    #[inline]
    pub const fn is_broadcast(&self) -> bool {
        u32::from_be_bytes(self.octets()) == u32::from_be_bytes(Self::BROADCAST.octets())
    }

    /// Returns [`true`] if this address is in a range designated for documentation.
    ///
    /// This is defined in [IETF RFC 5737]:
    ///
    /// - `192.0.2.0/24` (TEST-NET-1)
    /// - `198.51.100.0/24` (TEST-NET-2)
    /// - `203.0.113.0/24` (TEST-NET-3)
    ///
    /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
    /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
    /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
    /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
    /// ```
    #[inline]
    pub const fn is_documentation(&self) -> bool {
        match self.octets() {
            [192, 0, 2, _] => true,
            [198, 51, 100, _] => true,
            [203, 0, 113, _] => true,
            _ => false,
        }
    }

    /// Converts this address to an IPv4-compatible [`IPv6` address].
    ///
    /// `a.b.c.d` becomes `::a.b.c.d`
    ///
    /// This isn't typically the method you want; these addresses don't typically
    /// function on modern systems. Use `to_ipv6_mapped` instead.
    ///
    /// [`IPv6` address]: Ipv6Addr
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{Ipv4Addr, Ipv6Addr};
    ///
    /// assert_eq!(
    ///     Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
    ///     Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff)
    /// );
    /// ```
    #[inline]
    pub const fn to_ipv6_compatible(&self) -> Ipv6Addr {
        let [a, b, c, d] = self.octets();
        Ipv6Addr::new(
            0,
            0,
            0,
            0,
            0,
            0,
            ((a as u16) << 8) | b as u16,
            ((c as u16) << 8) | d as u16,
        )
    }

    /// Converts this address to an IPv4-mapped [`IPv6` address].
    ///
    /// `a.b.c.d` becomes `::ffff:a.b.c.d`
    ///
    /// [`IPv6` address]: Ipv6Addr
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{Ipv4Addr, Ipv6Addr};
    ///
    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
    ///            Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff));
    /// ```
    #[inline]
    pub const fn to_ipv6_mapped(&self) -> Ipv6Addr {
        let [a, b, c, d] = self.octets();
        Ipv6Addr::new(
            0,
            0,
            0,
            0,
            0,
            0xffff,
            ((a as u16) << 8) | b as u16,
            ((c as u16) << 8) | d as u16,
        )
    }
}

impl fmt::Display for IpAddr {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            IpAddr::V4(ip) => ip.fmt(fmt),
            IpAddr::V6(ip) => ip.fmt(fmt),
        }
    }
}

impl fmt::Debug for IpAddr {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(self, fmt)
    }
}

impl From<Ipv4Addr> for IpAddr {
    /// Copies this address to a new `IpAddr::V4`.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{IpAddr, Ipv4Addr};
    ///
    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
    ///
    /// assert_eq!(
    ///     IpAddr::V4(addr),
    ///     IpAddr::from(addr)
    /// )
    /// ```
    #[inline]
    fn from(ipv4: Ipv4Addr) -> IpAddr {
        IpAddr::V4(ipv4)
    }
}

impl From<Ipv6Addr> for IpAddr {
    /// Copies this address to a new `IpAddr::V6`.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{IpAddr, Ipv6Addr};
    ///
    /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
    ///
    /// assert_eq!(
    ///     IpAddr::V6(addr),
    ///     IpAddr::from(addr)
    /// );
    /// ```
    #[inline]
    fn from(ipv6: Ipv6Addr) -> IpAddr {
        IpAddr::V6(ipv6)
    }
}

impl fmt::Display for Ipv4Addr {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        let octets = self.octets();
        // Fast Path: if there's no alignment stuff, write directly to the buffer
        if fmt.precision().is_none() && fmt.width().is_none() {
            write!(
                fmt,
                "{}.{}.{}.{}",
                octets[0], octets[1], octets[2], octets[3]
            )
        } else {
            const IPV4_BUF_LEN: usize = 15; // Long enough for the longest possible IPv4 address
            let mut buf = [0u8; IPV4_BUF_LEN];
            let mut buf_slice = WriteHelper::new(&mut buf[..]);

            // Note: The call to write should never fail, hence the unwrap
            write!(
                buf_slice,
                "{}.{}.{}.{}",
                octets[0], octets[1], octets[2], octets[3]
            )
            .unwrap();
            let len = IPV4_BUF_LEN - buf_slice.into_raw().len();

            // This unsafe is OK because we know what is being written to the buffer
            let buf = unsafe { core::str::from_utf8_unchecked(&buf[..len]) };
            fmt.pad(buf)
        }
    }
}

impl fmt::Debug for Ipv4Addr {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(self, fmt)
    }
}

impl Clone for Ipv4Addr {
    #[inline]
    fn clone(&self) -> Ipv4Addr {
        *self
    }
}

impl PartialEq for Ipv4Addr {
    #[inline]
    fn eq(&self, other: &Ipv4Addr) -> bool {
        self.inner == other.inner
    }
}

impl PartialEq<Ipv4Addr> for IpAddr {
    #[inline]
    fn eq(&self, other: &Ipv4Addr) -> bool {
        match self {
            IpAddr::V4(v4) => v4 == other,
            IpAddr::V6(_) => false,
        }
    }
}

impl PartialEq<IpAddr> for Ipv4Addr {
    #[inline]
    fn eq(&self, other: &IpAddr) -> bool {
        match other {
            IpAddr::V4(v4) => self == v4,
            IpAddr::V6(_) => false,
        }
    }
}

impl Eq for Ipv4Addr {}

impl hash::Hash for Ipv4Addr {
    #[inline]
    fn hash<H: hash::Hasher>(&self, s: &mut H) {
        self.inner.hash(s)
    }
}

impl PartialOrd for Ipv4Addr {
    #[inline]
    fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialOrd<Ipv4Addr> for IpAddr {
    #[inline]
    fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
        match self {
            IpAddr::V4(v4) => v4.partial_cmp(other),
            IpAddr::V6(_) => Some(Ordering::Greater),
        }
    }
}

impl PartialOrd<IpAddr> for Ipv4Addr {
    #[inline]
    fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
        match other {
            IpAddr::V4(v4) => self.partial_cmp(v4),
            IpAddr::V6(_) => Some(Ordering::Less),
        }
    }
}

impl Ord for Ipv4Addr {
    #[inline]
    fn cmp(&self, other: &Ipv4Addr) -> Ordering {
        // Compare as native endian
        u32::from_be_bytes(self.inner).cmp(&u32::from_be_bytes(other.inner))
    }
}

impl From<Ipv4Addr> for u32 {
    /// Converts an `Ipv4Addr` into a host byte order `u32`.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// let addr = Ipv4Addr::new(0xca, 0xfe, 0xba, 0xbe);
    /// assert_eq!(0xcafebabe, u32::from(addr));
    /// ```
    #[inline]
    fn from(ip: Ipv4Addr) -> u32 {
        let ip = ip.octets();
        u32::from_be_bytes(ip)
    }
}

impl From<u32> for Ipv4Addr {
    /// Converts a host byte order `u32` into an `Ipv4Addr`.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// let addr = Ipv4Addr::from(0xcafebabe);
    /// assert_eq!(Ipv4Addr::new(0xca, 0xfe, 0xba, 0xbe), addr);
    /// ```
    #[inline]
    fn from(ip: u32) -> Ipv4Addr {
        Ipv4Addr::from(ip.to_be_bytes())
    }
}

impl From<[u8; 4]> for Ipv4Addr {
    /// Creates an `Ipv4Addr` from a four element byte array.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv4Addr;
    ///
    /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
    /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
    /// ```
    #[inline]
    fn from(octets: [u8; 4]) -> Ipv4Addr {
        Ipv4Addr::new(octets[0], octets[1], octets[2], octets[3])
    }
}

impl From<[u8; 4]> for IpAddr {
    /// Creates an `IpAddr::V4` from a four element byte array.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{IpAddr, Ipv4Addr};
    ///
    /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]);
    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr);
    /// ```
    #[inline]
    fn from(octets: [u8; 4]) -> IpAddr {
        IpAddr::V4(Ipv4Addr::from(octets))
    }
}

impl Ipv6Addr {
    /// Creates a new IPv6 address from eight 16-bit segments.
    ///
    /// The result will represent the IP address `a:b:c:d:e:f:g:h`.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv6Addr;
    ///
    /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
    /// ```
    #[inline]
    pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr {
        Ipv6Addr {
            inner: [
                (a >> 8) as u8,
                a as u8,
                (b >> 8) as u8,
                b as u8,
                (c >> 8) as u8,
                c as u8,
                (d >> 8) as u8,
                d as u8,
                (e >> 8) as u8,
                e as u8,
                (f >> 8) as u8,
                f as u8,
                (g >> 8) as u8,
                g as u8,
                (h >> 8) as u8,
                h as u8,
            ],
        }
    }

    /// An IPv6 address representing localhost: `::1`.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv6Addr;
    ///
    /// let addr = Ipv6Addr::LOCALHOST;
    /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
    /// ```
    pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);

    /// An IPv6 address representing the unspecified address: `::`
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv6Addr;
    ///
    /// let addr = Ipv6Addr::UNSPECIFIED;
    /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
    /// ```
    pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0);

    /// Returns the eight 16-bit segments that make up this address.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv6Addr;
    ///
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
    ///            [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
    /// ```
    #[inline]
    pub const fn segments(&self) -> [u16; 8] {
        let arr = self.octets();
        [
            (arr[0] as u16) << 8 | (arr[1] as u16),
            (arr[2] as u16) << 8 | (arr[3] as u16),
            (arr[4] as u16) << 8 | (arr[5] as u16),
            (arr[6] as u16) << 8 | (arr[7] as u16),
            (arr[8] as u16) << 8 | (arr[9] as u16),
            (arr[10] as u16) << 8 | (arr[11] as u16),
            (arr[12] as u16) << 8 | (arr[13] as u16),
            (arr[14] as u16) << 8 | (arr[15] as u16),
        ]
    }

    /// Returns [`true`] for the special 'unspecified' address (`::`).
    ///
    /// This property is defined in [IETF RFC 4291].
    ///
    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv6Addr;
    ///
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
    /// ```
    #[inline]
    pub const fn is_unspecified(&self) -> bool {
        u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::UNSPECIFIED.octets())
    }

    /// Returns [`true`] if this is a loopback address (::1).
    ///
    /// This property is defined in [IETF RFC 4291].
    ///
    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv6Addr;
    ///
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
    /// ```
    #[inline]
    pub const fn is_loopback(&self) -> bool {
        u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::LOCALHOST.octets())
    }

    /// Returns [`true`] if the address appears to be globally routable.
    ///
    /// The following return [`false`]:
    ///
    /// - the loopback address
    /// - link-local and unique local unicast addresses
    /// - interface-, link-, realm-, admin- and site-local multicast addresses
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    ///
    /// use no_std_net::Ipv6Addr;
    ///
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), true);
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_global(), false);
    /// assert_eq!(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1).is_global(), true);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_global(&self) -> bool {
        match self.multicast_scope() {
            Some(Ipv6MulticastScope::Global) => true,
            None => self.is_unicast_global(),
            _ => false,
        }
    }

    /// Returns [`true`] if this is a unique local address (`fc00::/7`).
    ///
    /// This property is defined in [IETF RFC 4193].
    ///
    /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    ///
    /// use no_std_net::Ipv6Addr;
    ///
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false);
    /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_unique_local(&self) -> bool {
        (self.segments()[0] & 0xfe00) == 0xfc00
    }

    /// Returns [`true`] if this is a unicast address, as defined by [IETF RFC 4291].
    /// Any address that is not a [multicast address] (`ff00::/8`) is unicast.
    ///
    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
    /// [multicast address]: Ipv6Addr::is_multicast
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    ///
    /// use no_std_net::Ipv6Addr;
    ///
    /// // The unspecified and loopback addresses are unicast.
    /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_unicast(), true);
    /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast(), true);
    ///
    /// // Any address that is not a multicast address (`ff00::/8`) is unicast.
    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast(), true);
    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_unicast(), false);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_unicast(&self) -> bool {
        !self.is_multicast()
    }

    /// Returns `true` if the address is a unicast address with link-local scope,
    /// as defined in [RFC 4291].
    ///
    /// A unicast address has link-local scope if it has the prefix `fe80::/10`, as per [RFC 4291 section 2.4].
    /// Note that this encompasses more addresses than those defined in [RFC 4291 section 2.5.6],
    /// which describes "Link-Local IPv6 Unicast Addresses" as having the following stricter format:
    ///
    /// ```text
    /// | 10 bits  |         54 bits         |          64 bits           |
    /// +----------+-------------------------+----------------------------+
    /// |1111111010|           0             |       interface ID         |
    /// +----------+-------------------------+----------------------------+
    /// ```
    /// So while currently the only addresses with link-local scope an application will encounter are all in `fe80::/64`,
    /// this might change in the future with the publication of new standards. More addresses in `fe80::/10` could be allocated,
    /// and those addresses will have link-local scope.
    ///
    /// Also note that while [RFC 4291 section 2.5.3] mentions about the [loopback address] (`::1`) that "it is treated as having Link-Local scope",
    /// this does not mean that the loopback address actually has link-local scope and this method will return `false` on it.
    ///
    /// [RFC 4291]: https://tools.ietf.org/html/rfc4291
    /// [RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
    /// [RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
    /// [RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6
    /// [loopback address]: Ipv6Addr::LOCALHOST
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    ///
    /// use no_std_net::Ipv6Addr;
    ///
    /// // The loopback address (`::1`) does not actually have link-local scope.
    /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast_link_local(), false);
    ///
    /// // Only addresses in `fe80::/10` have link-local scope.
    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), false);
    /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
    ///
    /// // Addresses outside the stricter `fe80::/64` also have link-local scope.
    /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0).is_unicast_link_local(), true);
    /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_unicast_link_local(&self) -> bool {
        (self.segments()[0] & 0xffc0) == 0xfe80
    }

    /// Returns [`true`] if this is a deprecated unicast site-local address (`fec0::/10`). The
    /// unicast site-local address format is defined in [RFC 4291 section 2.5.7] as:
    ///
    /// ```no_rust
    /// |   10     |
    /// |  bits    |         54 bits         |         64 bits            |
    /// +----------+-------------------------+----------------------------+
    /// |1111111011|        subnet ID        |       interface ID         |
    /// +----------+-------------------------+----------------------------+
    /// ```
    ///
    /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    ///
    /// use no_std_net::Ipv6Addr;
    ///
    /// assert_eq!(
    ///     Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_site_local(),
    ///     false
    /// );
    /// assert_eq!(Ipv6Addr::new(0xfec2, 0, 0, 0, 0, 0, 0, 0).is_unicast_site_local(), true);
    /// ```
    ///
    /// # Warning
    ///
    /// As per [RFC 3879], the whole `fec0::/10` prefix is
    /// deprecated. New software must not support site-local
    /// addresses.
    ///
    /// [RFC 3879]: https://tools.ietf.org/html/rfc3879
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_unicast_site_local(&self) -> bool {
        (self.segments()[0] & 0xffc0) == 0xfec0
    }

    /// Returns [`true`] if this is an address reserved for documentation
    /// (`2001:db8::/32`).
    ///
    /// This property is defined in [IETF RFC 3849].
    ///
    /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    ///
    /// use no_std_net::Ipv6Addr;
    ///
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false);
    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_documentation(&self) -> bool {
        (self.segments()[0] == 0x2001) && (self.segments()[1] == 0xdb8)
    }

    /// Returns [`true`] if the address is a globally routable unicast address.
    ///
    /// The following return false:
    ///
    /// - the loopback address
    /// - the link-local addresses
    /// - unique local addresses
    /// - the unspecified address
    /// - the address range reserved for documentation
    ///
    /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7]
    ///
    /// ```no_rust
    /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer
    /// be supported in new implementations (i.e., new implementations must treat this prefix as
    /// Global Unicast).
    /// ```
    ///
    /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    ///
    /// use no_std_net::Ipv6Addr;
    ///
    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false);
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn is_unicast_global(&self) -> bool {
        self.is_unicast()
            && !self.is_loopback()
            && !self.is_unicast_link_local()
            && !self.is_unique_local()
            && !self.is_unspecified()
            && !self.is_documentation()
    }

    /// Returns the address's multicast scope if the address is multicast.
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    ///
    /// use no_std_net::{Ipv6Addr, Ipv6MulticastScope};
    ///
    /// assert_eq!(
    ///     Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
    ///     Some(Ipv6MulticastScope::Global)
    /// );
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
        if self.is_multicast() {
            match self.segments()[0] & 0x000f {
                1 => Some(Ipv6MulticastScope::InterfaceLocal),
                2 => Some(Ipv6MulticastScope::LinkLocal),
                3 => Some(Ipv6MulticastScope::RealmLocal),
                4 => Some(Ipv6MulticastScope::AdminLocal),
                5 => Some(Ipv6MulticastScope::SiteLocal),
                8 => Some(Ipv6MulticastScope::OrganizationLocal),
                14 => Some(Ipv6MulticastScope::Global),
                _ => None,
            }
        } else {
            None
        }
    }

    /// Returns [`true`] if this is a multicast address (`ff00::/8`).
    ///
    /// This property is defined by [IETF RFC 4291].
    ///
    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv6Addr;
    ///
    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
    /// ```
    #[inline]
    pub const fn is_multicast(&self) -> bool {
        (self.segments()[0] & 0xff00) == 0xff00
    }

    /// Converts this address to an [`IPv4` address] if it's an "IPv4-mapped IPv6 address"
    /// defined in [IETF RFC 4291 section 2.5.5.2], otherwise returns [`None`].
    ///
    /// `::ffff:a.b.c.d` becomes `a.b.c.d`.
    /// All addresses *not* starting with `::ffff` will return `None`.
    ///
    /// [`IPv4` address]: Ipv4Addr
    /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
    ///
    /// # Examples
    ///
    /// ```
    /// // Requires `unstable_ip` feature
    ///
    /// use no_std_net::{Ipv4Addr, Ipv6Addr};
    ///
    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None);
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(),
    ///            Some(Ipv4Addr::new(192, 10, 2, 255)));
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None);
    /// ```
    #[cfg(feature = "unstable_ip")]
    #[inline]
    pub const fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> {
        match self.octets() {
            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d] => {
                Some(Ipv4Addr::new(a, b, c, d))
            }
            _ => None,
        }
    }

    /// Converts this address to an [`IPv4` address]. Returns [`None`] if this address is
    /// neither IPv4-compatible or IPv4-mapped.
    ///
    /// `::a.b.c.d` and `::ffff:a.b.c.d` become `a.b.c.d`
    ///
    /// [`IPv4` address]: Ipv4Addr
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{Ipv4Addr, Ipv6Addr};
    ///
    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
    ///            Some(Ipv4Addr::new(192, 10, 2, 255)));
    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
    ///            Some(Ipv4Addr::new(0, 0, 0, 1)));
    /// ```
    #[inline]
    pub const fn to_ipv4(&self) -> Option<Ipv4Addr> {
        if let [0, 0, 0, 0, 0, 0 | 0xffff, ab, cd] = self.segments() {
            let [a, b] = ab.to_be_bytes();
            let [c, d] = cd.to_be_bytes();
            Some(Ipv4Addr::new(a, b, c, d))
        } else {
            None
        }
    }

    /// Returns the sixteen eight-bit integers the IPv6 address consists of.
    ///
    /// ```
    /// use no_std_net::Ipv6Addr;
    ///
    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
    ///            [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
    /// ```
    #[inline]
    pub const fn octets(&self) -> [u8; 16] {
        self.inner
    }
}

/// Write an Ipv6Addr, conforming to the canonical style described by
/// [RFC 5952](https://tools.ietf.org/html/rfc5952).
impl fmt::Display for Ipv6Addr {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // If there are no alignment requirements, write out the IP address to
        // f. Otherwise, write it to a local buffer, then use f.pad.
        if f.precision().is_none() && f.width().is_none() {
            let segments = self.segments();

            // Special case for :: and ::1; otherwise they get written with the
            // IPv4 formatter
            if self.is_unspecified() {
                f.write_str("::")
            } else if self.is_loopback() {
                f.write_str("::1")
            } else if let Some(ipv4) = self.to_ipv4() {
                match segments[5] {
                    // IPv4 Compatible address
                    0 => write!(f, "::{}", ipv4),
                    // IPv4 Mapped address
                    0xffff => write!(f, "::ffff:{}", ipv4),
                    _ => unreachable!(),
                }
            } else {
                #[derive(Copy, Clone, Default)]
                struct Span {
                    start: usize,
                    len: usize,
                }

                // Find the inner 0 span
                let zeroes = {
                    let mut longest = Span::default();
                    let mut current = Span::default();

                    for (i, &segment) in segments.iter().enumerate() {
                        if segment == 0 {
                            if current.len == 0 {
                                current.start = i;
                            }

                            current.len += 1;

                            if current.len > longest.len {
                                longest = current;
                            }
                        } else {
                            current = Span::default();
                        }
                    }

                    longest
                };

                /// Write a colon-separated part of the address
                #[inline]
                fn fmt_subslice(f: &mut fmt::Formatter<'_>, chunk: &[u16]) -> fmt::Result {
                    if let Some((first, tail)) = chunk.split_first() {
                        write!(f, "{:x}", first)?;
                        for segment in tail {
                            f.write_char(':')?;
                            write!(f, "{:x}", segment)?;
                        }
                    }
                    Ok(())
                }

                if zeroes.len > 1 {
                    fmt_subslice(f, &segments[..zeroes.start])?;
                    f.write_str("::")?;
                    fmt_subslice(f, &segments[zeroes.start + zeroes.len..])
                } else {
                    fmt_subslice(f, &segments)
                }
            }
        } else {
            // Slow path: write the address to a local buffer, the use f.pad.
            // Defined recursively by using the fast path to write to the
            // buffer.

            // This is the largest possible size of an IPv6 address
            const IPV6_BUF_LEN: usize = (4 * 8) + 7;
            let mut buf = [0u8; IPV6_BUF_LEN];
            let mut buf_slice = WriteHelper::new(&mut buf[..]);

            // Note: This call to write should never fail, so unwrap is okay.
            write!(buf_slice, "{}", self).unwrap();
            let len = IPV6_BUF_LEN - buf_slice.into_raw().len();

            // This is safe because we know exactly what can be in this buffer
            let buf = unsafe { core::str::from_utf8_unchecked(&buf[..len]) };
            f.pad(buf)
        }
    }
}

impl fmt::Debug for Ipv6Addr {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(self, fmt)
    }
}

impl Clone for Ipv6Addr {
    #[inline]
    fn clone(&self) -> Ipv6Addr {
        *self
    }
}

impl PartialEq for Ipv6Addr {
    #[inline]
    fn eq(&self, other: &Ipv6Addr) -> bool {
        self.inner == other.inner
    }
}

impl PartialEq<IpAddr> for Ipv6Addr {
    #[inline]
    fn eq(&self, other: &IpAddr) -> bool {
        match other {
            IpAddr::V4(_) => false,
            IpAddr::V6(v6) => self == v6,
        }
    }
}

impl PartialEq<Ipv6Addr> for IpAddr {
    #[inline]
    fn eq(&self, other: &Ipv6Addr) -> bool {
        match self {
            IpAddr::V4(_) => false,
            IpAddr::V6(v6) => v6 == other,
        }
    }
}

impl Eq for Ipv6Addr {}

impl hash::Hash for Ipv6Addr {
    #[inline]
    fn hash<H: hash::Hasher>(&self, s: &mut H) {
        self.inner.hash(s)
    }
}

impl PartialOrd for Ipv6Addr {
    #[inline]
    fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialOrd<Ipv6Addr> for IpAddr {
    #[inline]
    fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
        match self {
            IpAddr::V4(_) => Some(Ordering::Less),
            IpAddr::V6(v6) => v6.partial_cmp(other),
        }
    }
}

impl PartialOrd<IpAddr> for Ipv6Addr {
    #[inline]
    fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
        match other {
            IpAddr::V4(_) => Some(Ordering::Greater),
            IpAddr::V6(v6) => self.partial_cmp(v6),
        }
    }
}

impl Ord for Ipv6Addr {
    #[inline]
    fn cmp(&self, other: &Ipv6Addr) -> Ordering {
        self.segments().cmp(&other.segments())
    }
}
impl From<Ipv6Addr> for u128 {
    /// Convert an `Ipv6Addr` into a host byte order `u128`.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv6Addr;
    ///
    /// let addr = Ipv6Addr::new(
    ///     0x1020, 0x3040, 0x5060, 0x7080,
    ///     0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
    /// );
    /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, u128::from(addr));
    /// ```
    #[inline]
    fn from(ip: Ipv6Addr) -> u128 {
        let ip = ip.octets();
        u128::from_be_bytes(ip)
    }
}
impl From<u128> for Ipv6Addr {
    /// Convert a host byte order `u128` into an `Ipv6Addr`.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv6Addr;
    ///
    /// let addr = Ipv6Addr::from(0x102030405060708090A0B0C0D0E0F00D_u128);
    /// assert_eq!(
    ///     Ipv6Addr::new(
    ///         0x1020, 0x3040, 0x5060, 0x7080,
    ///         0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
    ///     ),
    ///     addr);
    /// ```
    #[inline]
    fn from(ip: u128) -> Ipv6Addr {
        Ipv6Addr::from(ip.to_be_bytes())
    }
}

impl From<[u8; 16]> for Ipv6Addr {
    /// Creates an `Ipv6Addr` from a sixteen element byte array.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv6Addr;
    ///
    /// let addr = Ipv6Addr::from([
    ///     25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
    ///     17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
    /// ]);
    /// assert_eq!(
    ///     Ipv6Addr::new(
    ///         0x1918, 0x1716,
    ///         0x1514, 0x1312,
    ///         0x1110, 0x0f0e,
    ///         0x0d0c, 0x0b0a
    ///     ),
    ///     addr
    /// );
    /// ```
    #[inline]
    fn from(octets: [u8; 16]) -> Ipv6Addr {
        Ipv6Addr { inner: octets }
    }
}

impl From<[u16; 8]> for Ipv6Addr {
    /// Creates an `Ipv6Addr` from an eight element 16-bit array.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::Ipv6Addr;
    ///
    /// let addr = Ipv6Addr::from([
    ///     525u16, 524u16, 523u16, 522u16,
    ///     521u16, 520u16, 519u16, 518u16,
    /// ]);
    /// assert_eq!(
    ///     Ipv6Addr::new(
    ///         0x20d, 0x20c,
    ///         0x20b, 0x20a,
    ///         0x209, 0x208,
    ///         0x207, 0x206
    ///     ),
    ///     addr
    /// );
    /// ```
    #[inline]
    fn from(segments: [u16; 8]) -> Ipv6Addr {
        let [a, b, c, d, e, f, g, h] = segments;
        Ipv6Addr::new(a, b, c, d, e, f, g, h)
    }
}

impl From<[u8; 16]> for IpAddr {
    /// Creates an `IpAddr::V6` from a sixteen element byte array.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{IpAddr, Ipv6Addr};
    ///
    /// let addr = IpAddr::from([
    ///     25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
    ///     17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
    /// ]);
    /// assert_eq!(
    ///     IpAddr::V6(Ipv6Addr::new(
    ///         0x1918, 0x1716,
    ///         0x1514, 0x1312,
    ///         0x1110, 0x0f0e,
    ///         0x0d0c, 0x0b0a
    ///     )),
    ///     addr
    /// );
    /// ```
    #[inline]
    fn from(octets: [u8; 16]) -> IpAddr {
        IpAddr::V6(Ipv6Addr::from(octets))
    }
}

impl From<[u16; 8]> for IpAddr {
    /// Creates an `IpAddr::V6` from an eight element 16-bit array.
    ///
    /// # Examples
    ///
    /// ```
    /// use no_std_net::{IpAddr, Ipv6Addr};
    ///
    /// let addr = IpAddr::from([
    ///     525u16, 524u16, 523u16, 522u16,
    ///     521u16, 520u16, 519u16, 518u16,
    /// ]);
    /// assert_eq!(
    ///     IpAddr::V6(Ipv6Addr::new(
    ///         0x20d, 0x20c,
    ///         0x20b, 0x20a,
    ///         0x209, 0x208,
    ///         0x207, 0x206
    ///     )),
    ///     addr
    /// );
    /// ```
    #[inline]
    fn from(segments: [u16; 8]) -> IpAddr {
        IpAddr::V6(Ipv6Addr::from(segments))
    }
}