1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
// Set of libraries for privacy-preserving networking apps
//
// SPDX-License-Identifier: Apache-2.0
//
// Written in 2023 by
//     Dr. Maxim Orlovsky <orlovsky@cyphernet.org>
//
// Copyright 2023 Cyphernet DAO, Switzerland
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::VecDeque;

use cypher::{Digest, EcPk, Ecdh};

use crate::cipher::{decrypt, encrypt, rekey, SharedSecret};
use crate::error::{EncryptionError, NoiseError};
use crate::hkdf::{hkdf_2, hkdf_3};
use crate::patterns::{HandshakePattern, Keyset, MessagePattern};
use crate::{ChainingKey, HandshakeHash, NoiseNonce};

trait WithTruncated {
    fn with_truncated(temp_key: impl AsRef<[u8]>) -> Self;
}

impl WithTruncated for SharedSecret {
    fn with_truncated(temp_key: impl AsRef<[u8]>) -> Self {
        let mut key = [0u8; 32];
        match temp_key.as_ref().len() {
            32 => {
                key.copy_from_slice(temp_key.as_ref());
            }
            64 => {
                key.copy_from_slice(&temp_key.as_ref()[..32]);
            }
            x => {
                panic!(
                    "Noise protocol requires HASH function with output length either 32 or 64 \
                     bytes (a function outputting {x} bytes were given)"
                )
            }
        }
        key
    }
}

#[derive(Clone, Eq, PartialEq, Debug, Default)]
pub struct CipherState {
    k: SharedSecret,
    n: NoiseNonce,
}

impl CipherState {
    pub fn new() -> Self { CipherState { k: [0u8; 32], n: 0 } }

    pub fn initialize_key(&mut self, key: SharedSecret) {
        self.k = key;
        self.n = 0;
    }

    pub fn has_key(&self) -> bool { self.k != [0u8; 32] }

    pub fn nonce(&self) -> NoiseNonce { self.n }

    pub fn set_nonce(&mut self, nonce: NoiseNonce) { self.n = nonce; }

    pub fn encrypt_with_ad(
        &mut self,
        ad: &[u8],
        plaintext: &[u8],
    ) -> Result<Vec<u8>, EncryptionError> {
        if self.k.is_empty() {
            Ok(plaintext.to_vec())
        } else {
            // If k is non-empty returns ENCRYPT(k, n++, ad, plaintext).
            let ciphertext = encrypt(self.k, self.n, ad, plaintext);
            self.n += 1;
            ciphertext
        }
    }
    pub fn decrypt_with_ad(
        &mut self,
        ad: &[u8],
        ciphertext: &[u8],
    ) -> Result<Vec<u8>, EncryptionError> {
        if self.k.is_empty() {
            Ok(ciphertext.to_vec())
        } else {
            // If k is non-empty returns DECRYPT(k, n++, ad, ciphertext).
            // If an authentication failure occurs in DECRYPT() then n is not incremented and an
            // error is signaled to the caller.
            let plaintext = decrypt(self.k, self.n, ad, ciphertext)?;
            self.n += 1;
            Ok(plaintext)
        }
    }

    pub fn rekey(&mut self) { self.k = rekey(self.k); }
}

#[derive(Clone, Eq, PartialEq, Debug)]
pub struct SymmetricState<D: Digest> {
    cipher: CipherState,
    ck: ChainingKey<D>,
    h: HandshakeHash<D>,
    was_split: bool,
}

impl<D: Digest> SymmetricState<D> {
    pub fn with<const HASHLEN: usize>(protocol_name: String) -> Self {
        debug_assert_eq!(HASHLEN, D::OUTPUT_LEN);
        let len = protocol_name.len();
        let h = if len <= HASHLEN {
            let mut h = [0u8; HASHLEN];
            h[..len].copy_from_slice(protocol_name.as_bytes());
            D::Output::try_from(&h).unwrap_or_else(|_| unreachable!())
        } else {
            D::digest(protocol_name.as_bytes())
        };
        let cipher = CipherState::new();
        Self {
            cipher,
            h,
            ck: h,
            was_split: false,
        }
    }

    pub fn mix_key(&mut self, input_key_material: impl AsRef<[u8]>) {
        let (ck, temp_key) = hkdf_2::<D>(self.ck, input_key_material);
        self.ck = ck;
        self.cipher.initialize_key(SharedSecret::with_truncated(temp_key));
    }

    pub fn mix_hash(&mut self, data: impl AsRef<[u8]>) {
        self.h = D::digest_concat([self.h.as_ref(), data.as_ref()]);
    }

    // TODO: Use in PSK
    #[allow(dead_code)]
    pub fn mix_key_and_hash(&mut self, input_key_material: impl AsRef<[u8]>) {
        // Sets ck, temp_h, temp_k = HKDF(ck, input_key_material, 3).
        let (ck, temp_h, temp_k) = hkdf_3::<D>(self.ck, input_key_material);
        self.ck = ck;

        // Calls MixHash(temp_h).
        self.mix_hash(temp_h);

        // If HASHLEN is 64, then truncates temp_k to 32 bytes.
        // Calls InitializeKey(temp_k).
        self.cipher.initialize_key(SharedSecret::with_truncated(temp_k));
    }

    pub fn get_handshake_hash(&self) -> HandshakeHash<D> {
        if !self.was_split {
            panic!(
                "SymmetricState::get_handshake_hash must be called only after \
                 SymmetricState::split"
            )
        }
        self.h
    }

    pub fn encrypt_and_hash(
        &mut self,
        plaintext: impl AsRef<[u8]>,
    ) -> Result<Vec<u8>, EncryptionError> {
        // ciphertext = EncryptWithAd(h, plaintext), calls MixHash(ciphertext), and returns
        // ciphertext. Note that if k is empty, the EncryptWithAd() call will set ciphertext equal
        // to plaintext.
        let ciphertext = self.cipher.encrypt_with_ad(self.h.as_ref(), plaintext.as_ref())?;
        self.mix_hash(&ciphertext);
        Ok(ciphertext)
    }

    pub fn decrypt_and_hash(
        &mut self,
        ciphertext: impl AsRef<[u8]>,
    ) -> Result<Vec<u8>, EncryptionError> {
        // plaintext = DecryptWithAd(h, ciphertext), calls MixHash(ciphertext), and returns
        // plaintext. Note that if k is empty, the DecryptWithAd() call will set plaintext equal to
        // ciphertext.
        let plaintext = self.cipher.decrypt_with_ad(self.h.as_ref(), ciphertext.as_ref())?;
        self.mix_hash(&ciphertext);
        Ok(plaintext)
    }

    pub fn split(&mut self) -> (CipherState, CipherState) {
        // Sets temp_k1, temp_k2 = HKDF(ck, zerolen, 2).
        let (temp_k1, temp_k2) = hkdf_2::<D>(self.ck, []);

        // If HASHLEN is 64, then truncates temp_k1 and temp_k2 to 32 bytes.
        let k1 = SharedSecret::with_truncated(temp_k1);
        let k2 = SharedSecret::with_truncated(temp_k2);

        // Creates two new CipherState objects c1 and c2.
        let mut c1 = CipherState::new();
        let mut c2 = CipherState::new();

        // Calls c1.InitializeKey(temp_k1) and c2.InitializeKey(temp_k2).
        c1.initialize_key(k1);
        c2.initialize_key(k2);

        self.was_split = true;

        // Returns the pair (c1, c2).
        (c1, c2)
    }
}

#[derive(Clone, Eq, PartialEq, Debug)]
pub struct HandshakeState<E: Ecdh, D: Digest> {
    state: SymmetricState<D>,
    is_initiator: bool,
    keyset: Keyset<E>,
    handshake_pattern: HandshakePattern,
    read_message_patterns: VecDeque<&'static [MessagePattern]>,
    write_message_patterns: VecDeque<&'static [MessagePattern]>,
}

impl<E: Ecdh, D: Digest> HandshakeState<E, D> {
    /// Initialize(handshake_pattern, initiator, prologue, s, e, rs, re): Takes a valid
    /// handshake_pattern (see Section 7) and an initiator boolean specifying this party's role
    /// as either initiator or responder.
    ///
    /// Takes a prologue byte sequence which may be zero-length, or which may contain context
    /// information that both parties want to confirm is identical (see Section 6).
    ///
    /// Takes a set of DH key pairs (s, e) and public keys (rs, re) for initializing local
    /// variables, any of which may be empty. Public keys are only passed in if the
    /// handshake_pattern uses pre-messages (see Section 7). The ephemeral values (e, re) are
    /// typically left empty, since they are created and exchanged during the handshake; but
    /// there are exceptions (see Section 10).
    ///
    /// Performs the following steps:
    ///
    /// Derives a protocol_name byte sequence by combining the names for the handshake pattern
    /// and crypto functions, as specified in Section 8.
    ///
    /// Calls InitializeSymmetric(protocol_name).
    ///
    /// Calls MixHash(prologue).
    ///
    /// Sets the initiator, s, e, rs, and re variables to the corresponding arguments.
    ///
    /// Calls MixHash() once for each public key listed in the pre-messages from
    /// handshake_pattern, with the specified public key as input (see Section 7 for an
    /// explanation of pre-messages). If both initiator and responder have pre-messages, the
    /// initiator's public keys are hashed first. If multiple public keys are listed in either
    /// party's pre-message, the public keys are hashed in the order that they are listed.
    ///
    /// Sets message_patterns to the message patterns from handshake_pattern.
    pub fn initialize<const HASHLEN: usize>(
        handshake_pattern: HandshakePattern,
        is_initiator: bool,
        prologue: &[u8],
        keyset: Keyset<E>,
    ) -> Self {
        debug_assert_eq!(HASHLEN, D::OUTPUT_LEN);
        let mut name_components = vec![s!("Noise")];
        let curve_name = match E::Pk::CURVE_NAME {
            "Curve25519" => "25519",
            "Secp256k1" => "secp256k1",
            "Edwards25519" => "Edwards25519", // ECDH over Edwards-coordinate version of Curve25519
            unsupported => {
                unimplemented!("curve {unsupported} is not supported by the Noise library")
            }
        };
        name_components.push(handshake_pattern.to_string());
        name_components.push(curve_name.to_owned());
        name_components.push("ChaChaPoly".to_owned());
        name_components.push(D::DIGEST_NAME.to_owned());
        let protocol_name = name_components.join("_");

        let mut state = SymmetricState::<D>::with::<HASHLEN>(protocol_name);
        state.mix_hash(prologue);

        for pre_msg in handshake_pattern.pre_messages() {
            if let Some(key) = keyset.pre_message_key(*pre_msg, is_initiator) {
                state.mix_hash(key.to_pk_compressed().as_ref())
            }
        }

        let write_message_patterns =
            VecDeque::from_iter(handshake_pattern.message_patterns(is_initiator).iter().copied());
        let read_message_patterns =
            VecDeque::from_iter(handshake_pattern.message_patterns(!is_initiator).iter().copied());

        Self {
            handshake_pattern,
            read_message_patterns,
            write_message_patterns,
            is_initiator,
            keyset,
            state,
        }
    }

    /// Takes a payload byte sequence which may be zero-length
    ///
    /// # Errors
    ///
    /// If any EncryptAndHash() call returns an error
    fn write_message(&mut self, payload: &[u8]) -> Result<HandshakeAct, EncryptionError> {
        match self.write_message_patterns.pop_front() {
            Some(seq) => {
                let mut message_buffer = Vec::<u8>::new();
                // 1. Fetches and deletes the next message pattern from message_patterns, then
                // sequentially processes each token from the message pattern:
                //   - For "e": Sets e (which must be empty) to GENERATE_KEYPAIR(). Appends
                //     e.public_key to the buffer. Calls MixHash(e.public_key).
                //   - For "s": Appends EncryptAndHash(s.public_key) to the buffer.
                //   - For "ee": Calls MixKey(DH(e, re)).
                //   - For "es": Calls MixKey(DH(e, rs)) if initiator, MixKey(DH(s, re)) if
                //     responder.
                //   - For "se": Calls MixKey(DH(s, re)) if initiator, MixKey(DH(e, rs)) if
                //     responder.
                //   - For "ss": Calls MixKey(DH(s, rs)).

                for pat in seq {
                    match pat {
                        MessagePattern::E => {
                            let (e, pubkey) = E::generate_keypair();
                            let pk = pubkey.to_pk_compressed();
                            message_buffer.extend(pk.as_ref());

                            self.state.mix_hash(pk);
                            self.keyset.e = e;
                        }
                        MessagePattern::S => {
                            let s = self.keyset.expect_s().to_pk()?.to_pk_compressed();
                            let enc = self.state.encrypt_and_hash(s)?;
                            message_buffer.extend(&enc)
                        }
                        MessagePattern::EE => {
                            self.state.mix_key(self.keyset.e.ecdh(self.keyset.expect_re())?)
                        }
                        MessagePattern::ES if self.is_initiator => {
                            self.state.mix_key(self.keyset.e.ecdh(self.keyset.expect_rs())?)
                        }
                        MessagePattern::ES => self
                            .state
                            .mix_key(self.keyset.expect_s().ecdh(self.keyset.expect_re())?),
                        MessagePattern::SE if self.is_initiator => self
                            .state
                            .mix_key(self.keyset.expect_s().ecdh(self.keyset.expect_re())?),
                        MessagePattern::SE => {
                            self.state.mix_key(self.keyset.e.ecdh(self.keyset.expect_rs())?)
                        }
                        MessagePattern::SS => self
                            .state
                            .mix_key(self.keyset.expect_s().ecdh(self.keyset.expect_rs())?),
                    };
                }

                // 2. Appends EncryptAndHash(payload) to the buffer.
                message_buffer.extend(self.state.encrypt_and_hash(payload)?);

                Ok(HandshakeAct::Buffer(message_buffer))
            }
            None => {
                // 3. If there are no more message patterns returns two new CipherState objects by
                // calling Split().
                let (c1, c2) = self.state.split();
                Ok(HandshakeAct::Split(c1, c2))
            }
        }
    }

    /// Takes a byte sequence containing a Noise handshake message, and a payload_buffer to write
    /// the message's plaintext payload into.
    ///
    /// # Errors
    ///
    /// If any DecryptAndHash() call returns an error
    fn read_message(&mut self, message: &[u8]) -> Result<HandshakeAct, EncryptionError> {
        match self.read_message_patterns.pop_front() {
            Some(seq) => {
                let mut payload_buffer = Vec::new();
                let mut pos = 0usize;

                // Performs the following steps:
                //
                // 1. Fetches and deletes the next message pattern from message_patterns, then
                // sequentially processes each token from the message pattern:
                //   - For "e": Sets re (which must be empty) to the next DHLEN bytes from the
                //     message. Calls MixHash(re.public_key).
                //   - For "s": Sets temp to the next DHLEN + 16 bytes of the message if HasKey() ==
                //     True, or to the next DHLEN bytes otherwise. Sets rs (which must be empty) to
                //     DecryptAndHash(temp).
                //   - For "ee": Calls MixKey(DH(e, re)).
                //   - For "es": Calls MixKey(DH(e, rs)) if initiator, MixKey(DH(s, re)) if
                //     responder.
                //   - For "se": Calls MixKey(DH(s, re)) if initiator, MixKey(DH(e, rs)) if
                //     responder.
                //   - For "ss": Calls MixKey(DH(s, rs)).
                for pat in seq {
                    match pat {
                        MessagePattern::E => {
                            debug_assert!(self.keyset.re.is_none());

                            let next_pos = pos + E::Pk::COMPRESSED_LEN;
                            let re = E::Pk::from_pk_compressed_slice(&message[pos..next_pos])?;
                            pos = next_pos;

                            self.state.mix_hash(re.to_pk_compressed());
                            self.keyset.re = Some(re);
                        }
                        MessagePattern::S => {
                            debug_assert!(self.keyset.rs.is_none());
                            let next_pos = match self.state.cipher.has_key() {
                                true => D::OUTPUT_LEN + 16,
                                false => D::OUTPUT_LEN,
                            };
                            let temp = self.state.decrypt_and_hash(&message[pos..next_pos])?;
                            self.keyset.rs = Some(E::Pk::from_pk_compressed_slice(&temp)?);
                            pos = next_pos;
                        }
                        MessagePattern::EE => {
                            self.state.mix_key(self.keyset.e.ecdh(self.keyset.expect_re())?);
                        }
                        MessagePattern::ES if self.is_initiator => {
                            self.state.mix_key(self.keyset.e.ecdh(self.keyset.expect_rs())?);
                        }
                        MessagePattern::ES => {
                            self.state
                                .mix_key(self.keyset.expect_s().ecdh(self.keyset.expect_re())?);
                        }
                        MessagePattern::SE if self.is_initiator => {
                            self.state
                                .mix_key(self.keyset.expect_s().ecdh(self.keyset.expect_re())?);
                        }
                        MessagePattern::SE => {
                            self.state.mix_key(self.keyset.e.ecdh(self.keyset.expect_rs())?);
                        }
                        MessagePattern::SS => {
                            self.state
                                .mix_key(self.keyset.expect_s().ecdh(self.keyset.expect_rs())?);
                        }
                    }
                }

                // 2. Calls DecryptAndHash() on the remaining bytes of the message and stores the
                // output into payload_buffer.
                let output = self.state.decrypt_and_hash(&message[pos..])?;
                payload_buffer.extend(output);

                Ok(HandshakeAct::Buffer(payload_buffer))
            }
            None => {
                // 3. If there are no more message patterns returns two new CipherState objects by
                // calling Split().
                let (c1, c2) = self.state.split();
                Ok(HandshakeAct::Split(c1, c2))
            }
        }
    }

    /// Provides information about next message length which should be read from a network stream.
    fn next_read_len(&self) -> usize {
        if self.read_message_patterns.is_empty() {
            return 0;
        }
        let mut pos = 0;
        let seq = self.read_message_patterns[0];
        for pat in seq {
            match pat {
                MessagePattern::E => {
                    pos += E::Pk::COMPRESSED_LEN;
                }
                MessagePattern::S if self.state.cipher.has_key() => {
                    pos += D::OUTPUT_LEN + 16;
                }
                MessagePattern::S => {
                    pos += D::OUTPUT_LEN;
                }
                _ => {}
            }
        }
        pos
    }
}

#[derive(Clone, Eq, PartialEq, Debug)]
pub enum HandshakeAct {
    Buffer(Vec<u8>),
    Split(CipherState, CipherState),
}

#[derive(Clone, Eq, PartialEq, Debug)]
pub enum NoiseState<E: Ecdh, D: Digest> {
    AwaitWrite(HandshakeState<E, D>),
    Handshake(HandshakeState<E, D>),
    Active {
        sending_cipher: CipherState,
        receiving_cipher: CipherState,
        handshake_hash: HandshakeHash<D>,
        remote_static_pubkey: Option<E::Pk>,
    },
}

impl<E: Ecdh, D: Digest> NoiseState<E, D> {
    pub fn initialize<const HASHLEN: usize>(
        handshake_pattern: HandshakePattern,
        is_initiator: bool,
        prologue: &[u8],
        keyset: Keyset<E>,
    ) -> Self {
        debug_assert_eq!(HASHLEN, D::OUTPUT_LEN);

        let handshake = HandshakeState::initialize::<HASHLEN>(
            handshake_pattern,
            is_initiator,
            prologue,
            keyset,
        );
        match is_initiator {
            true => Self::AwaitWrite(handshake),
            false => Self::Handshake(handshake),
        }
    }

    /// Takes incoming data from the remote peer, advances internal state machine
    /// and returns a data to be sent to the remote peer for the next handshake
    /// act. If the handshake is over, returns an empty vector. On subsequent
    /// calls return [`NoiseError::HandshakeComplete`] error.
    pub fn advance(&mut self, input: &[u8]) -> Result<Vec<u8>, NoiseError> {
        let (output, payload) = self.advance_with_payload(input, &[])?;
        if !payload.is_empty() {
            Err(NoiseError::PayloadNotEmpty)
        } else {
            Ok(output)
        }
    }

    pub fn advance_with_payload(
        &mut self,
        input: &[u8],
        payload: &[u8],
    ) -> Result<(Vec<u8>, Vec<u8>), NoiseError> {
        match self {
            NoiseState::AwaitWrite(handshake) => {
                let act = handshake.write_message(payload)?;
                match act {
                    HandshakeAct::Buffer(buffer) => {
                        *self = NoiseState::Handshake(handshake.clone());
                        Ok((buffer, vec![]))
                    }
                    _ => panic!("single-act handshake doesn't exist for noise protocol"),
                }
            }
            NoiseState::Handshake(handshake) => {
                let act = handshake.read_message(input)?;
                let read_payload = match act {
                    HandshakeAct::Buffer(payload) => payload,
                    HandshakeAct::Split(sending_cipher, receiving_cipher) => {
                        *self = NoiseState::Active {
                            sending_cipher,
                            receiving_cipher,
                            handshake_hash: handshake.state.get_handshake_hash(),
                            remote_static_pubkey: handshake.keyset.rs.clone(),
                        };
                        return Ok((vec![], vec![]));
                    }
                };
                let act = handshake.write_message(payload)?;
                match act {
                    HandshakeAct::Buffer(buffer) => Ok((buffer, read_payload)),
                    HandshakeAct::Split(sending_cipher, receiving_cipher) => {
                        *self = NoiseState::Active {
                            sending_cipher,
                            receiving_cipher,
                            handshake_hash: handshake.state.get_handshake_hash(),
                            remote_static_pubkey: handshake.keyset.rs.clone(),
                        };
                        Ok((vec![], vec![]))
                    }
                }
            }
            NoiseState::Active { .. } => Err(NoiseError::HandshakeComplete),
        }
    }

    /// Provides information about next message length which should be read from a network stream.
    pub fn next_read_len(&self) -> usize {
        match self {
            NoiseState::AwaitWrite(_) => 0,
            NoiseState::Handshake(handshake) => handshake.next_read_len(),
            NoiseState::Active { .. } => 0,
        }
    }

    pub fn get_handshake_hash(&self) -> Option<HandshakeHash<D>> {
        match self {
            NoiseState::AwaitWrite(_) | NoiseState::Handshake(_) => None,
            NoiseState::Active { handshake_hash, .. } => Some(*handshake_hash),
        }
    }

    pub fn get_remote_static_key(&self) -> Option<E::Pk> {
        match self {
            NoiseState::AwaitWrite(_) | NoiseState::Handshake(_) => None,
            NoiseState::Active {
                remote_static_pubkey,
                ..
            } => remote_static_pubkey.clone(),
        }
    }
}