noodles_csi/binning_index/
index.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
//! Coordinate-sorted index and fields.

mod builder;
pub mod header;
pub mod reference_sequence;

pub use self::{builder::Builder, header::Header, reference_sequence::ReferenceSequence};

use std::io;

use noodles_bgzf as bgzf;
use noodles_core::{region::Interval, Position};

use super::{index::reference_sequence::bin::Chunk, BinningIndex};

/// A binning index.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Index<I> {
    min_shift: u8,
    depth: u8,
    header: Option<Header>,
    reference_sequences: Vec<ReferenceSequence<I>>,
    unplaced_unmapped_record_count: Option<u64>,
}

impl<I> Index<I>
where
    I: reference_sequence::Index,
{
    /// Returns a builder to create an index from each of its fields.
    ///
    /// # Examples
    ///
    /// ```
    /// use noodles_csi as csi;
    /// let builder = csi::Index::builder();
    /// ```
    pub fn builder() -> Builder<I> {
        Builder::default()
    }

    /// Returns a list of indexed reference sequences.
    ///
    /// # Examples
    ///
    /// ```
    /// use noodles_csi as csi;
    /// let index = csi::Index::default();
    /// assert!(index.reference_sequences().is_empty());
    /// ```
    pub fn reference_sequences(&self) -> &[ReferenceSequence<I>] {
        &self.reference_sequences
    }
}

impl<I> Default for Index<I>
where
    I: reference_sequence::Index,
{
    fn default() -> Self {
        Self::builder().build()
    }
}

impl<I> BinningIndex for Index<I>
where
    I: reference_sequence::Index,
{
    fn min_shift(&self) -> u8 {
        self.min_shift
    }

    fn depth(&self) -> u8 {
        self.depth
    }

    fn header(&self) -> Option<&Header> {
        self.header.as_ref()
    }

    fn reference_sequences(&self) -> Box<dyn Iterator<Item = &dyn super::ReferenceSequence> + '_> {
        Box::new(
            self.reference_sequences
                .iter()
                .map(|reference_sequence| reference_sequence as &dyn super::ReferenceSequence),
        )
    }

    fn unplaced_unmapped_record_count(&self) -> Option<u64> {
        self.unplaced_unmapped_record_count
    }

    fn query(&self, reference_sequence_id: usize, interval: Interval) -> io::Result<Vec<Chunk>> {
        use super::optimize_chunks;

        let reference_sequence = self
            .reference_sequences()
            .get(reference_sequence_id)
            .ok_or_else(|| {
                io::Error::new(
                    io::ErrorKind::InvalidInput,
                    format!("invalid reference sequence ID: {reference_sequence_id}"),
                )
            })?;

        let query_bins = reference_sequence
            .query(self.min_shift(), self.depth(), interval)
            .map_err(|e| io::Error::new(io::ErrorKind::InvalidInput, e))?;

        let chunks: Vec<_> = query_bins
            .iter()
            .flat_map(|bin| bin.chunks())
            .copied()
            .collect();

        let (start, _) = resolve_interval(self.min_shift(), self.depth(), interval)?;
        let min_offset = reference_sequence.min_offset(self.min_shift(), self.depth(), start);
        let merged_chunks = optimize_chunks(&chunks, min_offset);

        Ok(merged_chunks)
    }

    fn last_first_record_start_position(&self) -> Option<bgzf::VirtualPosition> {
        self.reference_sequences
            .iter()
            .rev()
            .find_map(|rs| rs.first_record_in_last_linear_bin_start_position())
    }
}

fn resolve_interval<I>(min_shift: u8, depth: u8, interval: I) -> io::Result<(Position, Position)>
where
    I: Into<Interval>,
{
    let interval = interval.into();

    let start = interval.start().unwrap_or(Position::MIN);
    let max_position = max_position(min_shift, depth)?;

    if start > max_position {
        return Err(io::Error::new(
            io::ErrorKind::InvalidInput,
            "invalid start bound",
        ));
    }

    let end = interval.end().unwrap_or(max_position);

    if end > max_position {
        Err(io::Error::new(
            io::ErrorKind::InvalidInput,
            "invalid end bound",
        ))
    } else {
        Ok((start, end))
    }
}

fn max_position(min_shift: u8, depth: u8) -> io::Result<Position> {
    assert!(min_shift > 0);
    let n = (1 << (usize::from(min_shift) + 3 * usize::from(depth))) - 1;
    Position::try_from(n).map_err(|e| io::Error::new(io::ErrorKind::InvalidInput, e))
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_max_position() -> Result<(), Box<dyn std::error::Error>> {
        const MIN_SHIFT: u8 = 14;
        const DEPTH: u8 = 5;

        let actual = max_position(MIN_SHIFT, DEPTH)?;
        let expected = Position::try_from(536870911)?;
        assert_eq!(actual, expected);

        Ok(())
    }
}