norgopolis_module/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
//! # A Library for Creating Norgopolis Modules
//!
//! For information about Norgopolis, consult https://github.com/nvim-neorg/norgopolis.
//!
//! This library exposes an API for creating and maintaining a connection to the Norgopolis router.
//! Norgopolis modules provide specific sets of functionality, for example multithreaded parsing, database
//! access, etc. All of the default modules created by the Neorg team are built on top of this library.
//!
//! # Usage
//!
//! ### General Setup
//!
//! First, create a struct for your module. Name it whatever you'd like:
//!
//! ```rs
//! use norgopolis_module::{
//! invoker_service::Service, module_communication::MessagePack, Code, Module, Status,
//! };
//!
//! #[derive(Default)]
//! struct MyModule {
//! // add any data or state you might need to maintain here...
//! }
//! ```
//!
//! Second, implement the `norgopolis_module::invoker_service::Service` trait for your struct.
//! This forces you to implement a `call` function which will be invoked any time someone routes
//! a message to your module. Since async traits are not stabilized within Rust yet, tag your
//! trait implementation with `#[norgopolis_module::async_trait]`:
//!
//! ```rs
//! use tokio_stream::wrappers::UnboundedReceiverStream;
//!
//! #[norgopolis_module::async_trait]
//! impl Service for MyModule {
//! type Stream = UnboundedReceiverStream<Result<MessagePack, Status>>;
//!
//! async fn call(
//! &self,
//! function: String,
//! args: Option<MessagePack>,
//! ) -> Result<Self::Stream, Status> {
//! todo!()
//! }
//! }
//! ```
//!
//! ##### `Stream`
//!
//! The `Stream` type defines what sort of data will be returned back via gRPC. We recommend
//! that you set it to `UnboundedReceiverStream<Result<MessagePack, Status>>`. This means that
//! given one request your module will be able to return an infinite amount of MessagePack responses,
//! or a status code in case something went wrong.
//!
//! ##### `call`
//!
//! The `call` function gets invoked whenever a client routes a message to you. The message contains:
//! - The function that they would like to invoke
//! - An optional set of parameters they would like to supply to the function.
//!
//! ### Creating the Basic Glue
//!
//! In the `call` function it's recommended to match over all possible function names that your module
//! supports and returning an error code if it's unsupported:
//!
//! ```rs
//! match function.as_str() {
//! "my-function" => todo!(),
//! _ => Err(Status::new(Code::NotFound, "Requested function not found!")),
//! }
//! ```
//!
//! > [!IMPORTANT]
//! > It's always better to return *some* sort of status code over panicking.
//! > Panicking will terminate the connection to Norgopolis and the user will not receive
//! > any sort of error or warning.
//!
//! ### Decoding the Parameters
//!
//! If your function takes in any amount of parameters then now is the time to decode them.
//! If your parameter is complex (e.g. a dictionary) then it's recommended to create a struct
//! designated for it. Be sure to derive `serde::Serialize`:
//!
//! ```rs
//! #[derive(serde::Serialize)]
//! struct MyParameters {
//! name: String,
//! }
//! ```
//!
//! Aftewards, it's a simple matter of running `decode` on your arguments:
//!
//! ```rs
//! match function.as_str() {
//! "my-function" => {
//! let args: MyParameters = args
//! .unwrap() // WARNING: Don't actually use unwrap() in your code :)
//! .decode()
//! .map_err(|err| Status::new(Code::InvalidArgument, err.to_string()))?;
//!
//! // TODO: Do something with the parameters...
//! },
//! }
//! ```
//!
//! We manually provide the type of `args` so that Rust knows what type to serialize to.
//! Afterwards we wrap any possible errors into a status code which can be returned back to the client.
//!
//! ### Sending Data back to the Client
//!
//! Now that we have all of the input data in check we can process our data and return it back to the client.
//! The way we do this is in the form of a data stream. Thanks to data streams we can return long segments of
//! data over time instead of having to return the whole data upfront. When we return a segment of data, we
//! also return it in the form of a `Result<>`. This is because individual segments of data may contain errors,
//! but the whole process can complete succesfully. You should return errors from the `call` function when there
//! is an irrecoverable error, but should send back an error packet when a *portion* of the internal logic fails.
//!
//! Let's showcase all of this via an example:
//!
//! ```rs
//! match function.as_str() {
//! "my-function" => {
//! let args: MyParameters = args
//! .unwrap() // WARNING: Don't actually use unwrap() in your code :)
//! .decode()
//! .map_err(|err| Status::new(Code::InvalidArgument, err.to_string()))?;
//!
//! let (tx, rx) = tokio::sync::mpsc::unbounded_channel();
//!
//! // We send back an Ok() packet to the client with an encoded message of our choice
//! // (it can be anything that's serializable with serde!)
//! tx.send(Ok(MessagePack::encode(format!("Hello, {}!", args.name)))).unwrap();
//!
//! Ok(UnboundedReceiverStream::new(rx))
//! },
//! }
//! ```
//!
//! First, we create a sender and receiver via tokio's `unbounded_channel()`. This allows us to send data to the client
//! and for the client to read data from the module. All return messages have to be encoded via `MessagePack::encode`.
//!
//! ### Running the Module
//!
//! Now that we have all of the code set up, create an asynchronous main function. In here we will instantiate our
//! module and kick it into full gear:
//!
//! ```rs
//! #[tokio::main]
//! async fn main() {
//! Module::new().start(MyModule::default())
//! .await
//! .unwrap()
//! }
//! ```
//!
//! Voila! You now have a fundamental understanding of how modules communicate with Norgopolis and how to write your own
//! norgopolis module. Happy coding!
pub mod invoker_service;
mod stdio_service;
use std::time::Duration;
use futures::FutureExt;
use invoker_service::InvokerService;
use invoker_service::Service;
use module_communication::invoker_server::InvokerServer;
use stdio_service::StdioService;
use tokio::time::sleep;
use tokio_stream::wrappers::ReceiverStream;
use tonic::transport::Server;
pub use norgopolis_protos::module_communication;
pub use tonic::async_trait;
pub use tonic::{Code, Status};
/// Describes a module that can communicate with Norgopolis
/// over stdin/stdout.
pub struct Module {
/// Timeout duration for the module. If no messages are received by the module after this time
/// has passed the module will automatically shut down.
///
/// Default is 5 minutes.
pub timeout: Duration,
}
impl Default for Module {
fn default() -> Self {
Self::new()
}
}
impl Module {
pub fn new() -> Self {
Module {
timeout: Duration::from_secs(60 * 5),
}
}
pub fn timeout(self, timeout: Duration) -> Self {
Module { timeout }
}
pub async fn start<S>(self, service: S) -> Result<(), anyhow::Error>
where
S: Service + Sync + Send + 'static,
{
let (keepalive_tx, mut keepalive_rx) = tokio::sync::mpsc::unbounded_channel::<()>();
tokio::spawn(async move {
sleep(self.timeout).await;
if keepalive_rx.recv().now_or_never().is_none() {
std::process::exit(0);
}
// Drain the remained of the messages.
while keepalive_rx.recv().now_or_never().is_some() {}
});
let (stdin, stdout) = (tokio::io::stdin(), tokio::io::stdout());
let stdio_service = StdioService { stdin, stdout };
// TODO: Do this in a better way
// `once_stream` doesn't work :/
let (tx, rx) = tokio::sync::mpsc::channel::<Result<StdioService, anyhow::Error>>(1);
tx.send(Ok(stdio_service)).await?;
Ok(Server::builder()
.add_service(InvokerServer::new(InvokerService::new(
service,
keepalive_tx,
)))
.serve_with_incoming(ReceiverStream::new(rx))
.await?)
}
}