nu_protocol/pipeline/pipeline_data.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
use crate::{
ast::{Call, PathMember},
engine::{EngineState, Stack},
ByteStream, ByteStreamType, Config, ListStream, OutDest, PipelineMetadata, Range, ShellError,
Signals, Span, Type, Value,
};
use nu_utils::{stderr_write_all_and_flush, stdout_write_all_and_flush};
use std::io::Write;
const LINE_ENDING_PATTERN: &[char] = &['\r', '\n'];
/// The foundational abstraction for input and output to commands
///
/// This represents either a single Value or a stream of values coming into the command or leaving a command.
///
/// A note on implementation:
///
/// We've tried a few variations of this structure. Listing these below so we have a record.
///
/// * We tried always assuming a stream in Nushell. This was a great 80% solution, but it had some rough edges.
/// Namely, how do you know the difference between a single string and a list of one string. How do you know
/// when to flatten the data given to you from a data source into the stream or to keep it as an unflattened
/// list?
///
/// * We tried putting the stream into Value. This had some interesting properties as now commands "just worked
/// on values", but lead to a few unfortunate issues.
///
/// The first is that you can't easily clone Values in a way that felt largely immutable. For example, if
/// you cloned a Value which contained a stream, and in one variable drained some part of it, then the second
/// variable would see different values based on what you did to the first.
///
/// To make this kind of mutation thread-safe, we would have had to produce a lock for the stream, which in
/// practice would have meant always locking the stream before reading from it. But more fundamentally, it
/// felt wrong in practice that observation of a value at runtime could affect other values which happen to
/// alias the same stream. By separating these, we don't have this effect. Instead, variables could get
/// concrete list values rather than streams, and be able to view them without non-local effects.
///
/// * A balance of the two approaches is what we've landed on: Values are thread-safe to pass, and we can stream
/// them into any sources. Streams are still available to model the infinite streams approach of original
/// Nushell.
#[derive(Debug)]
pub enum PipelineData {
Empty,
Value(Value, Option<PipelineMetadata>),
ListStream(ListStream, Option<PipelineMetadata>),
ByteStream(ByteStream, Option<PipelineMetadata>),
}
impl PipelineData {
pub fn empty() -> PipelineData {
PipelineData::Empty
}
pub fn metadata(&self) -> Option<PipelineMetadata> {
match self {
PipelineData::Empty => None,
PipelineData::Value(_, meta)
| PipelineData::ListStream(_, meta)
| PipelineData::ByteStream(_, meta) => meta.clone(),
}
}
pub fn set_metadata(mut self, metadata: Option<PipelineMetadata>) -> Self {
match &mut self {
PipelineData::Empty => {}
PipelineData::Value(_, meta)
| PipelineData::ListStream(_, meta)
| PipelineData::ByteStream(_, meta) => *meta = metadata,
}
self
}
pub fn is_nothing(&self) -> bool {
matches!(self, PipelineData::Value(Value::Nothing { .. }, ..))
|| matches!(self, PipelineData::Empty)
}
/// PipelineData doesn't always have a Span, but we can try!
pub fn span(&self) -> Option<Span> {
match self {
PipelineData::Empty => None,
PipelineData::Value(value, ..) => Some(value.span()),
PipelineData::ListStream(stream, ..) => Some(stream.span()),
PipelineData::ByteStream(stream, ..) => Some(stream.span()),
}
}
/// Change the span of the [`PipelineData`].
///
/// Returns `Value(Nothing)` with the given span if it was [`PipelineData::Empty`].
pub fn with_span(self, span: Span) -> Self {
match self {
PipelineData::Empty => PipelineData::Value(Value::nothing(span), None),
PipelineData::Value(value, metadata) => {
PipelineData::Value(value.with_span(span), metadata)
}
PipelineData::ListStream(stream, metadata) => {
PipelineData::ListStream(stream.with_span(span), metadata)
}
PipelineData::ByteStream(stream, metadata) => {
PipelineData::ByteStream(stream.with_span(span), metadata)
}
}
}
/// Get a type that is representative of the `PipelineData`.
///
/// The type returned here makes no effort to collect a stream, so it may be a different type
/// than would be returned by [`Value::get_type()`] on the result of
/// [`.into_value()`](Self::into_value).
///
/// Specifically, a `ListStream` results in [`list stream`](Type::ListStream) rather than
/// the fully complete [`list`](Type::List) type (which would require knowing the contents),
/// and a `ByteStream` with [unknown](crate::ByteStreamType::Unknown) type results in
/// [`any`](Type::Any) rather than [`string`](Type::String) or [`binary`](Type::Binary).
pub fn get_type(&self) -> Type {
match self {
PipelineData::Empty => Type::Nothing,
PipelineData::Value(value, _) => value.get_type(),
PipelineData::ListStream(_, _) => Type::ListStream,
PipelineData::ByteStream(stream, _) => stream.type_().into(),
}
}
pub fn into_value(self, span: Span) -> Result<Value, ShellError> {
match self {
PipelineData::Empty => Ok(Value::nothing(span)),
PipelineData::Value(value, ..) => Ok(value.with_span(span)),
PipelineData::ListStream(stream, ..) => Ok(stream.into_value()),
PipelineData::ByteStream(stream, ..) => stream.into_value(),
}
}
/// Converts any `Value` variant that can be represented as a stream into its stream variant.
///
/// This means that lists and ranges are converted into list streams, and strings and binary are
/// converted into byte streams.
///
/// Returns an `Err` with the original stream if the variant couldn't be converted to a stream
/// variant. If the variant is already a stream variant, it is returned as-is.
pub fn try_into_stream(self, engine_state: &EngineState) -> Result<PipelineData, PipelineData> {
let span = self.span().unwrap_or(Span::unknown());
match self {
PipelineData::ListStream(..) | PipelineData::ByteStream(..) => Ok(self),
PipelineData::Value(Value::List { .. } | Value::Range { .. }, ref metadata) => {
let metadata = metadata.clone();
Ok(PipelineData::ListStream(
ListStream::new(self.into_iter(), span, engine_state.signals().clone()),
metadata,
))
}
PipelineData::Value(Value::String { val, .. }, metadata) => {
Ok(PipelineData::ByteStream(
ByteStream::read_string(val, span, engine_state.signals().clone()),
metadata,
))
}
PipelineData::Value(Value::Binary { val, .. }, metadata) => {
Ok(PipelineData::ByteStream(
ByteStream::read_binary(val, span, engine_state.signals().clone()),
metadata,
))
}
_ => Err(self),
}
}
/// Drain and write this [`PipelineData`] to `dest`.
///
/// Values are converted to bytes and separated by newlines if this is a `ListStream`.
pub fn write_to(self, mut dest: impl Write) -> Result<(), ShellError> {
match self {
PipelineData::Empty => Ok(()),
PipelineData::Value(value, ..) => {
let bytes = value_to_bytes(value)?;
dest.write_all(&bytes)?;
dest.flush()?;
Ok(())
}
PipelineData::ListStream(stream, ..) => {
for value in stream {
let bytes = value_to_bytes(value)?;
dest.write_all(&bytes)?;
dest.write_all(b"\n")?;
}
dest.flush()?;
Ok(())
}
PipelineData::ByteStream(stream, ..) => stream.write_to(dest),
}
}
/// Drain this [`PipelineData`] according to the current stdout [`OutDest`]s in `stack`.
///
/// For [`OutDest::Pipe`] and [`OutDest::PipeSeparate`], this will return the [`PipelineData`]
/// as is. For [`OutDest::Value`], this will collect into a value and return it. For
/// [`OutDest::Print`], the [`PipelineData`] is drained and printed. Otherwise, the
/// [`PipelineData`] is drained, but only printed if it is the output of an external command.
pub fn drain_to_out_dests(
self,
engine_state: &EngineState,
stack: &mut Stack,
) -> Result<Self, ShellError> {
match stack.pipe_stdout().unwrap_or(&OutDest::Inherit) {
OutDest::Print => {
self.print(engine_state, stack, false, false)?;
Ok(Self::Empty)
}
OutDest::Pipe | OutDest::PipeSeparate => Ok(self),
OutDest::Value => {
let metadata = self.metadata();
let span = self.span().unwrap_or(Span::unknown());
self.into_value(span).map(|val| Self::Value(val, metadata))
}
OutDest::File(file) => {
self.write_to(file.as_ref())?;
Ok(Self::Empty)
}
OutDest::Null | OutDest::Inherit => {
self.drain()?;
Ok(Self::Empty)
}
}
}
pub fn drain(self) -> Result<(), ShellError> {
match self {
Self::Empty => Ok(()),
Self::Value(Value::Error { error, .. }, ..) => Err(*error),
Self::Value(..) => Ok(()),
Self::ListStream(stream, ..) => stream.drain(),
Self::ByteStream(stream, ..) => stream.drain(),
}
}
/// Try convert from self into iterator
///
/// It returns Err if the `self` cannot be converted to an iterator.
///
/// The `span` should be the span of the command or operation that would raise an error.
pub fn into_iter_strict(self, span: Span) -> Result<PipelineIterator, ShellError> {
Ok(PipelineIterator(match self {
PipelineData::Value(value, ..) => {
let val_span = value.span();
match value {
Value::List { vals, .. } => PipelineIteratorInner::ListStream(
ListStream::new(vals.into_iter(), val_span, Signals::empty()).into_iter(),
),
Value::Binary { val, .. } => PipelineIteratorInner::ListStream(
ListStream::new(
val.into_iter().map(move |x| Value::int(x as i64, val_span)),
val_span,
Signals::empty(),
)
.into_iter(),
),
Value::Range { val, .. } => PipelineIteratorInner::ListStream(
ListStream::new(
val.into_range_iter(val_span, Signals::empty()),
val_span,
Signals::empty(),
)
.into_iter(),
),
// Propagate errors by explicitly matching them before the final case.
Value::Error { error, .. } => return Err(*error),
other => {
return Err(ShellError::OnlySupportsThisInputType {
exp_input_type: "list, binary, range, or byte stream".into(),
wrong_type: other.get_type().to_string(),
dst_span: span,
src_span: val_span,
})
}
}
}
PipelineData::ListStream(stream, ..) => {
PipelineIteratorInner::ListStream(stream.into_iter())
}
PipelineData::Empty => {
return Err(ShellError::OnlySupportsThisInputType {
exp_input_type: "list, binary, range, or byte stream".into(),
wrong_type: "null".into(),
dst_span: span,
src_span: span,
})
}
PipelineData::ByteStream(stream, ..) => {
if let Some(chunks) = stream.chunks() {
PipelineIteratorInner::ByteStream(chunks)
} else {
PipelineIteratorInner::Empty
}
}
}))
}
pub fn collect_string(self, separator: &str, config: &Config) -> Result<String, ShellError> {
match self {
PipelineData::Empty => Ok(String::new()),
PipelineData::Value(value, ..) => Ok(value.to_expanded_string(separator, config)),
PipelineData::ListStream(stream, ..) => Ok(stream.into_string(separator, config)),
PipelineData::ByteStream(stream, ..) => stream.into_string(),
}
}
/// Retrieves string from pipeline data.
///
/// As opposed to `collect_string` this raises error rather than converting non-string values.
/// The `span` will be used if `ListStream` is encountered since it doesn't carry a span.
pub fn collect_string_strict(
self,
span: Span,
) -> Result<(String, Span, Option<PipelineMetadata>), ShellError> {
match self {
PipelineData::Empty => Ok((String::new(), span, None)),
PipelineData::Value(Value::String { val, .. }, metadata) => Ok((val, span, metadata)),
PipelineData::Value(val, ..) => Err(ShellError::TypeMismatch {
err_message: "string".into(),
span: val.span(),
}),
PipelineData::ListStream(..) => Err(ShellError::TypeMismatch {
err_message: "string".into(),
span,
}),
PipelineData::ByteStream(stream, metadata) => {
let span = stream.span();
Ok((stream.into_string()?, span, metadata))
}
}
}
pub fn follow_cell_path(
self,
cell_path: &[PathMember],
head: Span,
insensitive: bool,
) -> Result<Value, ShellError> {
match self {
// FIXME: there are probably better ways of doing this
PipelineData::ListStream(stream, ..) => Value::list(stream.into_iter().collect(), head)
.follow_cell_path(cell_path, insensitive),
PipelineData::Value(v, ..) => v.follow_cell_path(cell_path, insensitive),
PipelineData::Empty => Err(ShellError::IncompatiblePathAccess {
type_name: "empty pipeline".to_string(),
span: head,
}),
PipelineData::ByteStream(stream, ..) => Err(ShellError::IncompatiblePathAccess {
type_name: stream.type_().describe().to_owned(),
span: stream.span(),
}),
}
}
/// Simplified mapper to help with simple values also. For full iterator support use `.into_iter()` instead
pub fn map<F>(self, mut f: F, signals: &Signals) -> Result<PipelineData, ShellError>
where
Self: Sized,
F: FnMut(Value) -> Value + 'static + Send,
{
match self {
PipelineData::Value(value, metadata) => {
let span = value.span();
let pipeline = match value {
Value::List { vals, .. } => vals
.into_iter()
.map(f)
.into_pipeline_data(span, signals.clone()),
Value::Range { val, .. } => val
.into_range_iter(span, Signals::empty())
.map(f)
.into_pipeline_data(span, signals.clone()),
value => match f(value) {
Value::Error { error, .. } => return Err(*error),
v => v.into_pipeline_data(),
},
};
Ok(pipeline.set_metadata(metadata))
}
PipelineData::Empty => Ok(PipelineData::Empty),
PipelineData::ListStream(stream, metadata) => {
Ok(PipelineData::ListStream(stream.map(f), metadata))
}
PipelineData::ByteStream(stream, metadata) => {
Ok(f(stream.into_value()?).into_pipeline_data_with_metadata(metadata))
}
}
}
/// Simplified flatmapper. For full iterator support use `.into_iter()` instead
pub fn flat_map<U, F>(self, mut f: F, signals: &Signals) -> Result<PipelineData, ShellError>
where
Self: Sized,
U: IntoIterator<Item = Value> + 'static,
<U as IntoIterator>::IntoIter: 'static + Send,
F: FnMut(Value) -> U + 'static + Send,
{
match self {
PipelineData::Empty => Ok(PipelineData::Empty),
PipelineData::Value(value, metadata) => {
let span = value.span();
let pipeline = match value {
Value::List { vals, .. } => vals
.into_iter()
.flat_map(f)
.into_pipeline_data(span, signals.clone()),
Value::Range { val, .. } => val
.into_range_iter(span, Signals::empty())
.flat_map(f)
.into_pipeline_data(span, signals.clone()),
value => f(value)
.into_iter()
.into_pipeline_data(span, signals.clone()),
};
Ok(pipeline.set_metadata(metadata))
}
PipelineData::ListStream(stream, metadata) => Ok(PipelineData::ListStream(
stream.modify(|iter| iter.flat_map(f)),
metadata,
)),
PipelineData::ByteStream(stream, metadata) => {
// TODO: is this behavior desired / correct ?
let span = stream.span();
let iter = match String::from_utf8(stream.into_bytes()?) {
Ok(mut str) => {
str.truncate(str.trim_end_matches(LINE_ENDING_PATTERN).len());
f(Value::string(str, span))
}
Err(err) => f(Value::binary(err.into_bytes(), span)),
};
Ok(iter.into_iter().into_pipeline_data_with_metadata(
span,
signals.clone(),
metadata,
))
}
}
}
pub fn filter<F>(self, mut f: F, signals: &Signals) -> Result<PipelineData, ShellError>
where
Self: Sized,
F: FnMut(&Value) -> bool + 'static + Send,
{
match self {
PipelineData::Empty => Ok(PipelineData::Empty),
PipelineData::Value(value, metadata) => {
let span = value.span();
let pipeline = match value {
Value::List { vals, .. } => vals
.into_iter()
.filter(f)
.into_pipeline_data(span, signals.clone()),
Value::Range { val, .. } => val
.into_range_iter(span, Signals::empty())
.filter(f)
.into_pipeline_data(span, signals.clone()),
value => {
if f(&value) {
value.into_pipeline_data()
} else {
Value::nothing(span).into_pipeline_data()
}
}
};
Ok(pipeline.set_metadata(metadata))
}
PipelineData::ListStream(stream, metadata) => Ok(PipelineData::ListStream(
stream.modify(|iter| iter.filter(f)),
metadata,
)),
PipelineData::ByteStream(stream, metadata) => {
// TODO: is this behavior desired / correct ?
let span = stream.span();
let value = match String::from_utf8(stream.into_bytes()?) {
Ok(mut str) => {
str.truncate(str.trim_end_matches(LINE_ENDING_PATTERN).len());
Value::string(str, span)
}
Err(err) => Value::binary(err.into_bytes(), span),
};
let value = if f(&value) {
value
} else {
Value::nothing(span)
};
Ok(value.into_pipeline_data_with_metadata(metadata))
}
}
}
/// Try to convert Value from Value::Range to Value::List.
/// This is useful to expand Value::Range into array notation, specifically when
/// converting `to json` or `to nuon`.
/// `1..3 | to XX -> [1,2,3]`
pub fn try_expand_range(self) -> Result<PipelineData, ShellError> {
match self {
PipelineData::Value(v, metadata) => {
let span = v.span();
match v {
Value::Range { val, .. } => {
match *val {
Range::IntRange(range) => {
if range.is_unbounded() {
return Err(ShellError::GenericError {
error: "Cannot create range".into(),
msg: "Unbounded ranges are not allowed when converting to this format".into(),
span: Some(span),
help: Some("Consider using ranges with valid start and end point.".into()),
inner: vec![],
});
}
}
Range::FloatRange(range) => {
if range.is_unbounded() {
return Err(ShellError::GenericError {
error: "Cannot create range".into(),
msg: "Unbounded ranges are not allowed when converting to this format".into(),
span: Some(span),
help: Some("Consider using ranges with valid start and end point.".into()),
inner: vec![],
});
}
}
}
let range_values: Vec<Value> =
val.into_range_iter(span, Signals::empty()).collect();
Ok(PipelineData::Value(Value::list(range_values, span), None))
}
x => Ok(PipelineData::Value(x, metadata)),
}
}
_ => Ok(self),
}
}
/// Consume and print self data immediately.
///
/// `no_newline` controls if we need to attach newline character to output.
/// `to_stderr` controls if data is output to stderr, when the value is false, the data is output to stdout.
pub fn print(
self,
engine_state: &EngineState,
stack: &mut Stack,
no_newline: bool,
to_stderr: bool,
) -> Result<(), ShellError> {
match self {
// Print byte streams directly as long as they aren't binary.
PipelineData::ByteStream(stream, ..) if stream.type_() != ByteStreamType::Binary => {
stream.print(to_stderr)
}
_ => {
// If the table function is in the declarations, then we can use it
// to create the table value that will be printed in the terminal
if let Some(decl_id) = engine_state.table_decl_id {
let command = engine_state.get_decl(decl_id);
if command.block_id().is_some() {
self.write_all_and_flush(engine_state, no_newline, to_stderr)
} else {
let call = Call::new(Span::new(0, 0));
let table = command.run(engine_state, stack, &(&call).into(), self)?;
table.write_all_and_flush(engine_state, no_newline, to_stderr)
}
} else {
self.write_all_and_flush(engine_state, no_newline, to_stderr)
}
}
}
}
/// Consume and print self data without any extra formatting.
///
/// This does not use the `table` command to format data, and also prints binary values and
/// streams in their raw format without generating a hexdump first.
///
/// `no_newline` controls if we need to attach newline character to output.
/// `to_stderr` controls if data is output to stderr, when the value is false, the data is output to stdout.
pub fn print_raw(
self,
engine_state: &EngineState,
no_newline: bool,
to_stderr: bool,
) -> Result<(), ShellError> {
if let PipelineData::Value(Value::Binary { val: bytes, .. }, _) = self {
if to_stderr {
stderr_write_all_and_flush(bytes)?;
} else {
stdout_write_all_and_flush(bytes)?;
}
Ok(())
} else {
self.write_all_and_flush(engine_state, no_newline, to_stderr)
}
}
fn write_all_and_flush(
self,
engine_state: &EngineState,
no_newline: bool,
to_stderr: bool,
) -> Result<(), ShellError> {
if let PipelineData::ByteStream(stream, ..) = self {
// Copy ByteStreams directly
stream.print(to_stderr)
} else {
let config = engine_state.get_config();
for item in self {
let mut out = if let Value::Error { error, .. } = item {
return Err(*error);
} else {
item.to_expanded_string("\n", config)
};
if !no_newline {
out.push('\n');
}
if to_stderr {
stderr_write_all_and_flush(out)?
} else {
stdout_write_all_and_flush(out)?
}
}
Ok(())
}
}
pub fn unsupported_input_error(
self,
expected_type: impl Into<String>,
span: Span,
) -> ShellError {
match self {
PipelineData::Empty => ShellError::PipelineEmpty { dst_span: span },
PipelineData::Value(value, ..) => ShellError::OnlySupportsThisInputType {
exp_input_type: expected_type.into(),
wrong_type: value.get_type().get_non_specified_string(),
dst_span: span,
src_span: value.span(),
},
PipelineData::ListStream(stream, ..) => ShellError::OnlySupportsThisInputType {
exp_input_type: expected_type.into(),
wrong_type: "list (stream)".into(),
dst_span: span,
src_span: stream.span(),
},
PipelineData::ByteStream(stream, ..) => ShellError::OnlySupportsThisInputType {
exp_input_type: expected_type.into(),
wrong_type: stream.type_().describe().into(),
dst_span: span,
src_span: stream.span(),
},
}
}
}
enum PipelineIteratorInner {
Empty,
Value(Value),
ListStream(crate::list_stream::IntoIter),
ByteStream(crate::byte_stream::Chunks),
}
pub struct PipelineIterator(PipelineIteratorInner);
impl IntoIterator for PipelineData {
type Item = Value;
type IntoIter = PipelineIterator;
fn into_iter(self) -> Self::IntoIter {
PipelineIterator(match self {
PipelineData::Empty => PipelineIteratorInner::Empty,
PipelineData::Value(value, ..) => {
let span = value.span();
match value {
Value::List { vals, .. } => PipelineIteratorInner::ListStream(
ListStream::new(vals.into_iter(), span, Signals::empty()).into_iter(),
),
Value::Range { val, .. } => PipelineIteratorInner::ListStream(
ListStream::new(
val.into_range_iter(span, Signals::empty()),
span,
Signals::empty(),
)
.into_iter(),
),
x => PipelineIteratorInner::Value(x),
}
}
PipelineData::ListStream(stream, ..) => {
PipelineIteratorInner::ListStream(stream.into_iter())
}
PipelineData::ByteStream(stream, ..) => stream.chunks().map_or(
PipelineIteratorInner::Empty,
PipelineIteratorInner::ByteStream,
),
})
}
}
impl Iterator for PipelineIterator {
type Item = Value;
fn next(&mut self) -> Option<Self::Item> {
match &mut self.0 {
PipelineIteratorInner::Empty => None,
PipelineIteratorInner::Value(Value::Nothing { .. }, ..) => None,
PipelineIteratorInner::Value(v, ..) => Some(std::mem::take(v)),
PipelineIteratorInner::ListStream(stream, ..) => stream.next(),
PipelineIteratorInner::ByteStream(stream) => stream.next().map(|x| match x {
Ok(x) => x,
Err(err) => Value::error(
err,
Span::unknown(), //FIXME: unclear where this span should come from
),
}),
}
}
}
pub trait IntoPipelineData {
fn into_pipeline_data(self) -> PipelineData;
fn into_pipeline_data_with_metadata(
self,
metadata: impl Into<Option<PipelineMetadata>>,
) -> PipelineData;
}
impl<V> IntoPipelineData for V
where
V: Into<Value>,
{
fn into_pipeline_data(self) -> PipelineData {
PipelineData::Value(self.into(), None)
}
fn into_pipeline_data_with_metadata(
self,
metadata: impl Into<Option<PipelineMetadata>>,
) -> PipelineData {
PipelineData::Value(self.into(), metadata.into())
}
}
pub trait IntoInterruptiblePipelineData {
fn into_pipeline_data(self, span: Span, signals: Signals) -> PipelineData;
fn into_pipeline_data_with_metadata(
self,
span: Span,
signals: Signals,
metadata: impl Into<Option<PipelineMetadata>>,
) -> PipelineData;
}
impl<I> IntoInterruptiblePipelineData for I
where
I: IntoIterator + Send + 'static,
I::IntoIter: Send + 'static,
<I::IntoIter as Iterator>::Item: Into<Value>,
{
fn into_pipeline_data(self, span: Span, signals: Signals) -> PipelineData {
ListStream::new(self.into_iter().map(Into::into), span, signals).into()
}
fn into_pipeline_data_with_metadata(
self,
span: Span,
signals: Signals,
metadata: impl Into<Option<PipelineMetadata>>,
) -> PipelineData {
PipelineData::ListStream(
ListStream::new(self.into_iter().map(Into::into), span, signals),
metadata.into(),
)
}
}
fn value_to_bytes(value: Value) -> Result<Vec<u8>, ShellError> {
let bytes = match value {
Value::String { val, .. } => val.into_bytes(),
Value::Binary { val, .. } => val,
Value::List { vals, .. } => {
let val = vals
.into_iter()
.map(Value::coerce_into_string)
.collect::<Result<Vec<String>, ShellError>>()?
.join("\n")
+ "\n";
val.into_bytes()
}
// Propagate errors by explicitly matching them before the final case.
Value::Error { error, .. } => return Err(*error),
value => value.coerce_into_string()?.into_bytes(),
};
Ok(bytes)
}