nu_protocol/pipeline/byte_stream.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
//! Module managing the streaming of raw bytes between pipeline elements
//!
//! This module also handles conversions the [`ShellError`] <-> [`io::Error`](std::io::Error),
//! so remember the usage of [`ShellErrorBridge`] where applicable.
#[cfg(feature = "os")]
use crate::process::{ChildPipe, ChildProcess};
use crate::{
shell_error::{bridge::ShellErrorBridge, io::IoError},
IntRange, PipelineData, ShellError, Signals, Span, Type, Value,
};
use serde::{Deserialize, Serialize};
use std::ops::Bound;
#[cfg(unix)]
use std::os::fd::OwnedFd;
#[cfg(windows)]
use std::os::windows::io::OwnedHandle;
use std::{
fmt::Debug,
fs::File,
io::{self, BufRead, BufReader, Cursor, ErrorKind, Read, Write},
process::Stdio,
};
/// The source of bytes for a [`ByteStream`].
///
/// Currently, there are only three possibilities:
/// 1. `Read` (any `dyn` type that implements [`Read`])
/// 2. [`File`]
/// 3. [`ChildProcess`]
pub enum ByteStreamSource {
Read(Box<dyn Read + Send + 'static>),
File(File),
#[cfg(feature = "os")]
Child(Box<ChildProcess>),
}
impl ByteStreamSource {
fn reader(self) -> Option<SourceReader> {
match self {
ByteStreamSource::Read(read) => Some(SourceReader::Read(read)),
ByteStreamSource::File(file) => Some(SourceReader::File(file)),
#[cfg(feature = "os")]
ByteStreamSource::Child(mut child) => child.stdout.take().map(|stdout| match stdout {
ChildPipe::Pipe(pipe) => SourceReader::File(convert_file(pipe)),
ChildPipe::Tee(tee) => SourceReader::Read(tee),
}),
}
}
/// Source is a `Child` or `File`, rather than `Read`. Currently affects trimming
#[cfg(feature = "os")]
pub fn is_external(&self) -> bool {
matches!(self, ByteStreamSource::Child(..))
}
#[cfg(not(feature = "os"))]
pub fn is_external(&self) -> bool {
// without os support we never have externals
false
}
}
impl Debug for ByteStreamSource {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ByteStreamSource::Read(_) => f.debug_tuple("Read").field(&"..").finish(),
ByteStreamSource::File(file) => f.debug_tuple("File").field(file).finish(),
#[cfg(feature = "os")]
ByteStreamSource::Child(child) => f.debug_tuple("Child").field(child).finish(),
}
}
}
enum SourceReader {
Read(Box<dyn Read + Send + 'static>),
File(File),
}
impl Read for SourceReader {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
match self {
SourceReader::Read(reader) => reader.read(buf),
SourceReader::File(file) => file.read(buf),
}
}
}
impl Debug for SourceReader {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
SourceReader::Read(_) => f.debug_tuple("Read").field(&"..").finish(),
SourceReader::File(file) => f.debug_tuple("File").field(file).finish(),
}
}
}
/// Optional type color for [`ByteStream`], which determines type compatibility.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize, Default)]
pub enum ByteStreamType {
/// Compatible with [`Type::Binary`], and should only be converted to binary, even when the
/// desired type is unknown.
Binary,
/// Compatible with [`Type::String`], and should only be converted to string, even when the
/// desired type is unknown.
///
/// This does not guarantee valid UTF-8 data, but it is conventionally so. Converting to
/// `String` still requires validation of the data.
String,
/// Unknown whether the stream should contain binary or string data. This usually is the result
/// of an external stream, e.g. an external command or file.
#[default]
Unknown,
}
impl ByteStreamType {
/// Returns the string that describes the byte stream type - i.e., the same as what `describe`
/// produces. This can be used in type mismatch error messages.
pub fn describe(self) -> &'static str {
match self {
ByteStreamType::Binary => "binary (stream)",
ByteStreamType::String => "string (stream)",
ByteStreamType::Unknown => "byte stream",
}
}
/// Returns true if the type is `Binary` or `Unknown`
pub fn is_binary_coercible(self) -> bool {
matches!(self, ByteStreamType::Binary | ByteStreamType::Unknown)
}
/// Returns true if the type is `String` or `Unknown`
pub fn is_string_coercible(self) -> bool {
matches!(self, ByteStreamType::String | ByteStreamType::Unknown)
}
}
impl From<ByteStreamType> for Type {
fn from(value: ByteStreamType) -> Self {
match value {
ByteStreamType::Binary => Type::Binary,
ByteStreamType::String => Type::String,
ByteStreamType::Unknown => Type::Any,
}
}
}
/// A potentially infinite, interruptible stream of bytes.
///
/// To create a [`ByteStream`], you can use any of the following methods:
/// - [`read`](ByteStream::read): takes any type that implements [`Read`].
/// - [`file`](ByteStream::file): takes a [`File`].
/// - [`from_iter`](ByteStream::from_iter): takes an [`Iterator`] whose items implement `AsRef<[u8]>`.
/// - [`from_result_iter`](ByteStream::from_result_iter): same as [`from_iter`](ByteStream::from_iter),
/// but each item is a `Result<T, ShellError>`.
/// - [`from_fn`](ByteStream::from_fn): uses a generator function to fill a buffer whenever it is
/// empty. This has high performance because it doesn't need to allocate for each chunk of data,
/// and can just reuse the same buffer.
///
/// Byte streams have a [type](.type_()) which is used to preserve type compatibility when they
/// are the result of an internal command. It is important that this be set to the correct value.
/// [`Unknown`](ByteStreamType::Unknown) is used only for external sources where the type can not
/// be inherently determined, and having it automatically act as a string or binary depending on
/// whether it parses as UTF-8 or not is desirable.
///
/// The data of a [`ByteStream`] can be accessed using one of the following methods:
/// - [`reader`](ByteStream::reader): returns a [`Read`]-able type to get the raw bytes in the stream.
/// - [`lines`](ByteStream::lines): splits the bytes on lines and returns an [`Iterator`]
/// where each item is a `Result<String, ShellError>`.
/// - [`chunks`](ByteStream::chunks): returns an [`Iterator`] of [`Value`]s where each value is
/// either a string or binary.
/// Try not to use this method if possible. Rather, please use [`reader`](ByteStream::reader)
/// (or [`lines`](ByteStream::lines) if it matches the situation).
///
/// Additionally, there are few methods to collect a [`ByteStream`] into memory:
/// - [`into_bytes`](ByteStream::into_bytes): collects all bytes into a [`Vec<u8>`].
/// - [`into_string`](ByteStream::into_string): collects all bytes into a [`String`], erroring if utf-8 decoding failed.
/// - [`into_value`](ByteStream::into_value): collects all bytes into a value typed appropriately
/// for the [type](.type_()) of this stream. If the type is [`Unknown`](ByteStreamType::Unknown),
/// it will produce a string value if the data is valid UTF-8, or a binary value otherwise.
///
/// There are also a few other methods to consume all the data of a [`ByteStream`]:
/// - [`drain`](ByteStream::drain): consumes all bytes and outputs nothing.
/// - [`write_to`](ByteStream::write_to): writes all bytes to the given [`Write`] destination.
/// - [`print`](ByteStream::print): a convenience wrapper around [`write_to`](ByteStream::write_to).
/// It prints all bytes to stdout or stderr.
///
/// Internally, [`ByteStream`]s currently come in three flavors according to [`ByteStreamSource`].
/// See its documentation for more information.
#[derive(Debug)]
pub struct ByteStream {
stream: ByteStreamSource,
span: Span,
signals: Signals,
type_: ByteStreamType,
known_size: Option<u64>,
}
impl ByteStream {
/// Create a new [`ByteStream`] from a [`ByteStreamSource`].
pub fn new(
stream: ByteStreamSource,
span: Span,
signals: Signals,
type_: ByteStreamType,
) -> Self {
Self {
stream,
span,
signals,
type_,
known_size: None,
}
}
/// Create a [`ByteStream`] from an arbitrary reader. The type must be provided.
pub fn read(
reader: impl Read + Send + 'static,
span: Span,
signals: Signals,
type_: ByteStreamType,
) -> Self {
Self::new(
ByteStreamSource::Read(Box::new(reader)),
span,
signals,
type_,
)
}
pub fn skip(self, span: Span, n: u64) -> Result<Self, ShellError> {
let known_size = self.known_size.map(|len| len.saturating_sub(n));
if let Some(mut reader) = self.reader() {
// Copy the number of skipped bytes into the sink before proceeding
io::copy(&mut (&mut reader).take(n), &mut io::sink())
.map_err(|err| IoError::new(err.kind(), span, None))?;
Ok(
ByteStream::read(reader, span, Signals::empty(), ByteStreamType::Binary)
.with_known_size(known_size),
)
} else {
Err(ShellError::TypeMismatch {
err_message: "expected readable stream".into(),
span,
})
}
}
pub fn take(self, span: Span, n: u64) -> Result<Self, ShellError> {
let known_size = self.known_size.map(|s| s.min(n));
if let Some(reader) = self.reader() {
Ok(ByteStream::read(
reader.take(n),
span,
Signals::empty(),
ByteStreamType::Binary,
)
.with_known_size(known_size))
} else {
Err(ShellError::TypeMismatch {
err_message: "expected readable stream".into(),
span,
})
}
}
pub fn slice(
self,
val_span: Span,
call_span: Span,
range: IntRange,
) -> Result<Self, ShellError> {
if let Some(len) = self.known_size {
let start = range.absolute_start(len);
let stream = self.skip(val_span, start);
match range.absolute_end(len) {
Bound::Unbounded => stream,
Bound::Included(end) | Bound::Excluded(end) if end < start => {
stream.and_then(|s| s.take(val_span, 0))
}
Bound::Included(end) => {
let distance = end - start + 1;
stream.and_then(|s| s.take(val_span, distance.min(len)))
}
Bound::Excluded(end) => {
let distance = end - start;
stream.and_then(|s| s.take(val_span, distance.min(len)))
}
}
} else if range.is_relative() {
Err(ShellError::RelativeRangeOnInfiniteStream { span: call_span })
} else {
let start = range.start() as u64;
let stream = self.skip(val_span, start);
match range.distance() {
Bound::Unbounded => stream,
Bound::Included(distance) => stream.and_then(|s| s.take(val_span, distance + 1)),
Bound::Excluded(distance) => stream.and_then(|s| s.take(val_span, distance)),
}
}
}
/// Create a [`ByteStream`] from a string. The type of the stream is always `String`.
pub fn read_string(string: String, span: Span, signals: Signals) -> Self {
let len = string.len();
ByteStream::read(
Cursor::new(string.into_bytes()),
span,
signals,
ByteStreamType::String,
)
.with_known_size(Some(len as u64))
}
/// Create a [`ByteStream`] from a byte vector. The type of the stream is always `Binary`.
pub fn read_binary(bytes: Vec<u8>, span: Span, signals: Signals) -> Self {
let len = bytes.len();
ByteStream::read(Cursor::new(bytes), span, signals, ByteStreamType::Binary)
.with_known_size(Some(len as u64))
}
/// Create a [`ByteStream`] from a file.
///
/// The type is implicitly `Unknown`, as it's not typically known whether files will
/// return text or binary.
pub fn file(file: File, span: Span, signals: Signals) -> Self {
Self::new(
ByteStreamSource::File(file),
span,
signals,
ByteStreamType::Unknown,
)
}
/// Create a [`ByteStream`] from a child process's stdout and stderr.
///
/// The type is implicitly `Unknown`, as it's not typically known whether child processes will
/// return text or binary.
#[cfg(feature = "os")]
pub fn child(child: ChildProcess, span: Span) -> Self {
Self::new(
ByteStreamSource::Child(Box::new(child)),
span,
Signals::empty(),
ByteStreamType::Unknown,
)
}
/// Create a [`ByteStream`] that reads from stdin.
///
/// The type is implicitly `Unknown`, as it's not typically known whether stdin is text or
/// binary.
#[cfg(feature = "os")]
pub fn stdin(span: Span) -> Result<Self, ShellError> {
let stdin = os_pipe::dup_stdin().map_err(|err| IoError::new(err.kind(), span, None))?;
let source = ByteStreamSource::File(convert_file(stdin));
Ok(Self::new(
source,
span,
Signals::empty(),
ByteStreamType::Unknown,
))
}
#[cfg(not(feature = "os"))]
pub fn stdin(span: Span) -> Result<Self, ShellError> {
Err(ShellError::DisabledOsSupport {
msg: "Stdin is not supported".to_string(),
span: Some(span),
})
}
/// Create a [`ByteStream`] from a generator function that writes data to the given buffer
/// when called, and returns `Ok(false)` on end of stream.
pub fn from_fn(
span: Span,
signals: Signals,
type_: ByteStreamType,
generator: impl FnMut(&mut Vec<u8>) -> Result<bool, ShellError> + Send + 'static,
) -> Self {
Self::read(
ReadGenerator {
buffer: Cursor::new(Vec::new()),
generator,
},
span,
signals,
type_,
)
}
pub fn with_type(mut self, type_: ByteStreamType) -> Self {
self.type_ = type_;
self
}
/// Create a new [`ByteStream`] from an [`Iterator`] of bytes slices.
///
/// The returned [`ByteStream`] will have a [`ByteStreamSource`] of `Read`.
pub fn from_iter<I>(iter: I, span: Span, signals: Signals, type_: ByteStreamType) -> Self
where
I: IntoIterator,
I::IntoIter: Send + 'static,
I::Item: AsRef<[u8]> + Default + Send + 'static,
{
let iter = iter.into_iter();
let cursor = Some(Cursor::new(I::Item::default()));
Self::read(ReadIterator { iter, cursor }, span, signals, type_)
}
/// Create a new [`ByteStream`] from an [`Iterator`] of [`Result`] bytes slices.
///
/// The returned [`ByteStream`] will have a [`ByteStreamSource`] of `Read`.
pub fn from_result_iter<I, T>(
iter: I,
span: Span,
signals: Signals,
type_: ByteStreamType,
) -> Self
where
I: IntoIterator<Item = Result<T, ShellError>>,
I::IntoIter: Send + 'static,
T: AsRef<[u8]> + Default + Send + 'static,
{
let iter = iter.into_iter();
let cursor = Some(Cursor::new(T::default()));
Self::read(ReadResultIterator { iter, cursor }, span, signals, type_)
}
/// Set the known size, in number of bytes, of the [`ByteStream`].
pub fn with_known_size(mut self, size: Option<u64>) -> Self {
self.known_size = size;
self
}
/// Get a reference to the inner [`ByteStreamSource`] of the [`ByteStream`].
pub fn source(&self) -> &ByteStreamSource {
&self.stream
}
/// Get a mutable reference to the inner [`ByteStreamSource`] of the [`ByteStream`].
pub fn source_mut(&mut self) -> &mut ByteStreamSource {
&mut self.stream
}
/// Returns the [`Span`] associated with the [`ByteStream`].
pub fn span(&self) -> Span {
self.span
}
/// Changes the [`Span`] associated with the [`ByteStream`].
pub fn with_span(mut self, span: Span) -> Self {
self.span = span;
self
}
/// Returns the [`ByteStreamType`] associated with the [`ByteStream`].
pub fn type_(&self) -> ByteStreamType {
self.type_
}
/// Returns the known size, in number of bytes, of the [`ByteStream`].
pub fn known_size(&self) -> Option<u64> {
self.known_size
}
/// Convert the [`ByteStream`] into its [`Reader`] which allows one to [`Read`] the raw bytes of the stream.
///
/// [`Reader`] is buffered and also implements [`BufRead`].
///
/// If the source of the [`ByteStream`] is [`ByteStreamSource::Child`] and the child has no stdout,
/// then the stream is considered empty and `None` will be returned.
pub fn reader(self) -> Option<Reader> {
let reader = self.stream.reader()?;
Some(Reader {
reader: BufReader::new(reader),
span: self.span,
signals: self.signals,
})
}
/// Convert the [`ByteStream`] into a [`Lines`] iterator where each element is a `Result<String, ShellError>`.
///
/// There is no limit on how large each line will be. Ending new lines (`\n` or `\r\n`) are
/// stripped from each line. If a line fails to be decoded as utf-8, then it will become a [`ShellError`].
///
/// If the source of the [`ByteStream`] is [`ByteStreamSource::Child`] and the child has no stdout,
/// then the stream is considered empty and `None` will be returned.
pub fn lines(self) -> Option<Lines> {
let reader = self.stream.reader()?;
Some(Lines {
reader: BufReader::new(reader),
span: self.span,
signals: self.signals,
})
}
/// Convert the [`ByteStream`] into a [`SplitRead`] iterator where each element is a `Result<String, ShellError>`.
///
/// Each call to [`next`](Iterator::next) reads the currently available data from the byte
/// stream source, until `delimiter` or the end of the stream is encountered.
///
/// If the source of the [`ByteStream`] is [`ByteStreamSource::Child`] and the child has no stdout,
/// then the stream is considered empty and `None` will be returned.
pub fn split(self, delimiter: Vec<u8>) -> Option<SplitRead> {
let reader = self.stream.reader()?;
Some(SplitRead::new(reader, delimiter, self.span, self.signals))
}
/// Convert the [`ByteStream`] into a [`Chunks`] iterator where each element is a `Result<Value, ShellError>`.
///
/// Each call to [`next`](Iterator::next) reads the currently available data from the byte stream source,
/// up to a maximum size. The values are typed according to the [type](.type_()) of the
/// stream, and if that type is [`Unknown`](ByteStreamType::Unknown), string values will be
/// produced as long as the stream continues to parse as valid UTF-8, but binary values will
/// be produced instead of the stream fails to parse as UTF-8 instead at any point.
/// Any and all newlines are kept intact in each chunk.
///
/// Where possible, prefer [`reader`](ByteStream::reader) or [`lines`](ByteStream::lines) over this method.
/// Those methods are more likely to be used in a semantically correct way
/// (and [`reader`](ByteStream::reader) is more efficient too).
///
/// If the source of the [`ByteStream`] is [`ByteStreamSource::Child`] and the child has no stdout,
/// then the stream is considered empty and `None` will be returned.
pub fn chunks(self) -> Option<Chunks> {
let reader = self.stream.reader()?;
Some(Chunks::new(reader, self.span, self.signals, self.type_))
}
/// Convert the [`ByteStream`] into its inner [`ByteStreamSource`].
pub fn into_source(self) -> ByteStreamSource {
self.stream
}
/// Attempt to convert the [`ByteStream`] into a [`Stdio`].
///
/// This will succeed if the [`ByteStreamSource`] of the [`ByteStream`] is either:
/// - [`File`](ByteStreamSource::File)
/// - [`Child`](ByteStreamSource::Child) and the child has a stdout that is `Some(ChildPipe::Pipe(..))`.
///
/// All other cases return an `Err` with the original [`ByteStream`] in it.
pub fn into_stdio(mut self) -> Result<Stdio, Self> {
match self.stream {
ByteStreamSource::Read(..) => Err(self),
ByteStreamSource::File(file) => Ok(file.into()),
#[cfg(feature = "os")]
ByteStreamSource::Child(child) => {
if let ChildProcess {
stdout: Some(ChildPipe::Pipe(stdout)),
stderr,
..
} = *child
{
debug_assert!(stderr.is_none(), "stderr should not exist");
Ok(stdout.into())
} else {
self.stream = ByteStreamSource::Child(child);
Err(self)
}
}
}
}
/// Attempt to convert the [`ByteStream`] into a [`ChildProcess`].
///
/// This will only succeed if the [`ByteStreamSource`] of the [`ByteStream`] is [`Child`](ByteStreamSource::Child).
/// All other cases return an `Err` with the original [`ByteStream`] in it.
#[cfg(feature = "os")]
pub fn into_child(self) -> Result<ChildProcess, Self> {
if let ByteStreamSource::Child(child) = self.stream {
Ok(*child)
} else {
Err(self)
}
}
/// Collect all the bytes of the [`ByteStream`] into a [`Vec<u8>`].
///
/// Any trailing new lines are kept in the returned [`Vec`].
pub fn into_bytes(self) -> Result<Vec<u8>, ShellError> {
// todo!() ctrlc
let from_io_error = IoError::factory(self.span, None);
match self.stream {
ByteStreamSource::Read(mut read) => {
let mut buf = Vec::new();
read.read_to_end(&mut buf).map_err(&from_io_error)?;
Ok(buf)
}
ByteStreamSource::File(mut file) => {
let mut buf = Vec::new();
file.read_to_end(&mut buf).map_err(&from_io_error)?;
Ok(buf)
}
#[cfg(feature = "os")]
ByteStreamSource::Child(child) => child.into_bytes(),
}
}
/// Collect the stream into a `String` in-memory. This can only succeed if the data contained is
/// valid UTF-8.
///
/// The trailing new line (`\n` or `\r\n`), if any, is removed from the [`String`] prior to
/// being returned, if this is a stream coming from an external process or file.
///
/// If the [type](.type_()) is specified as `Binary`, this operation always fails, even if the
/// data would have been valid UTF-8.
pub fn into_string(self) -> Result<String, ShellError> {
let span = self.span;
if self.type_.is_string_coercible() {
let trim = self.stream.is_external();
let bytes = self.into_bytes()?;
let mut string = String::from_utf8(bytes).map_err(|err| ShellError::NonUtf8Custom {
span,
msg: err.to_string(),
})?;
if trim {
trim_end_newline(&mut string);
}
Ok(string)
} else {
Err(ShellError::TypeMismatch {
err_message: "expected string, but got binary".into(),
span,
})
}
}
/// Collect all the bytes of the [`ByteStream`] into a [`Value`].
///
/// If this is a `String` stream, the stream is decoded to UTF-8. If the stream came from an
/// external process or file, the trailing new line (`\n` or `\r\n`), if any, is removed from
/// the [`String`] prior to being returned.
///
/// If this is a `Binary` stream, a [`Value::Binary`] is returned with any trailing new lines
/// preserved.
///
/// If this is an `Unknown` stream, the behavior depends on whether the stream parses as valid
/// UTF-8 or not. If it does, this is uses the `String` behavior; if not, it uses the `Binary`
/// behavior.
pub fn into_value(self) -> Result<Value, ShellError> {
let span = self.span;
let trim = self.stream.is_external();
let value = match self.type_ {
// If the type is specified, then the stream should always become that type:
ByteStreamType::Binary => Value::binary(self.into_bytes()?, span),
ByteStreamType::String => Value::string(self.into_string()?, span),
// If the type is not specified, then it just depends on whether it parses or not:
ByteStreamType::Unknown => match String::from_utf8(self.into_bytes()?) {
Ok(mut str) => {
if trim {
trim_end_newline(&mut str);
}
Value::string(str, span)
}
Err(err) => Value::binary(err.into_bytes(), span),
},
};
Ok(value)
}
/// Consume and drop all bytes of the [`ByteStream`].
pub fn drain(self) -> Result<(), ShellError> {
match self.stream {
ByteStreamSource::Read(read) => {
copy_with_signals(read, io::sink(), self.span, &self.signals)?;
Ok(())
}
ByteStreamSource::File(_) => Ok(()),
#[cfg(feature = "os")]
ByteStreamSource::Child(child) => child.wait(),
}
}
/// Print all bytes of the [`ByteStream`] to stdout or stderr.
pub fn print(self, to_stderr: bool) -> Result<(), ShellError> {
if to_stderr {
self.write_to(&mut io::stderr())
} else {
self.write_to(&mut io::stdout())
}
}
/// Write all bytes of the [`ByteStream`] to `dest`.
pub fn write_to(self, dest: impl Write) -> Result<(), ShellError> {
let span = self.span;
let signals = &self.signals;
match self.stream {
ByteStreamSource::Read(read) => {
copy_with_signals(read, dest, span, signals)?;
}
ByteStreamSource::File(file) => {
copy_with_signals(file, dest, span, signals)?;
}
#[cfg(feature = "os")]
ByteStreamSource::Child(mut child) => {
// All `OutDest`s except `OutDest::PipeSeparate` will cause `stderr` to be `None`.
// Only `save`, `tee`, and `complete` set the stderr `OutDest` to `OutDest::PipeSeparate`,
// and those commands have proper simultaneous handling of stdout and stderr.
debug_assert!(child.stderr.is_none(), "stderr should not exist");
if let Some(stdout) = child.stdout.take() {
match stdout {
ChildPipe::Pipe(pipe) => {
copy_with_signals(pipe, dest, span, signals)?;
}
ChildPipe::Tee(tee) => {
copy_with_signals(tee, dest, span, signals)?;
}
}
}
child.wait()?;
}
}
Ok(())
}
}
impl From<ByteStream> for PipelineData {
fn from(stream: ByteStream) -> Self {
Self::ByteStream(stream, None)
}
}
struct ReadIterator<I>
where
I: Iterator,
I::Item: AsRef<[u8]>,
{
iter: I,
cursor: Option<Cursor<I::Item>>,
}
impl<I> Read for ReadIterator<I>
where
I: Iterator,
I::Item: AsRef<[u8]>,
{
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
while let Some(cursor) = self.cursor.as_mut() {
let read = cursor.read(buf)?;
if read == 0 {
self.cursor = self.iter.next().map(Cursor::new);
} else {
return Ok(read);
}
}
Ok(0)
}
}
struct ReadResultIterator<I, T>
where
I: Iterator<Item = Result<T, ShellError>>,
T: AsRef<[u8]>,
{
iter: I,
cursor: Option<Cursor<T>>,
}
impl<I, T> Read for ReadResultIterator<I, T>
where
I: Iterator<Item = Result<T, ShellError>>,
T: AsRef<[u8]>,
{
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
while let Some(cursor) = self.cursor.as_mut() {
let read = cursor.read(buf)?;
if read == 0 {
self.cursor = self
.iter
.next()
.transpose()
.map_err(ShellErrorBridge)?
.map(Cursor::new);
} else {
return Ok(read);
}
}
Ok(0)
}
}
pub struct Reader {
reader: BufReader<SourceReader>,
span: Span,
signals: Signals,
}
impl Reader {
pub fn span(&self) -> Span {
self.span
}
}
impl Read for Reader {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.signals.check(self.span).map_err(ShellErrorBridge)?;
self.reader.read(buf)
}
}
impl BufRead for Reader {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
self.reader.fill_buf()
}
fn consume(&mut self, amt: usize) {
self.reader.consume(amt)
}
}
pub struct Lines {
reader: BufReader<SourceReader>,
span: Span,
signals: Signals,
}
impl Lines {
pub fn span(&self) -> Span {
self.span
}
}
impl Iterator for Lines {
type Item = Result<String, ShellError>;
fn next(&mut self) -> Option<Self::Item> {
if self.signals.interrupted() {
None
} else {
let mut buf = Vec::new();
match self.reader.read_until(b'\n', &mut buf) {
Ok(0) => None,
Ok(_) => {
let Ok(mut string) = String::from_utf8(buf) else {
return Some(Err(ShellError::NonUtf8 { span: self.span }));
};
trim_end_newline(&mut string);
Some(Ok(string))
}
Err(e) => Some(Err(IoError::new(e.kind(), self.span, None).into())),
}
}
}
}
mod split_read {
use std::io::{BufRead, ErrorKind};
use memchr::memmem::Finder;
pub struct SplitRead<R> {
reader: Option<R>,
buf: Option<Vec<u8>>,
finder: Finder<'static>,
}
impl<R: BufRead> SplitRead<R> {
pub fn new(reader: R, delim: impl AsRef<[u8]>) -> Self {
// empty delimiter results in an infinite stream of empty items
debug_assert!(!delim.as_ref().is_empty(), "delimiter can't be empty");
Self {
reader: Some(reader),
buf: Some(Vec::new()),
finder: Finder::new(delim.as_ref()).into_owned(),
}
}
}
impl<R: BufRead> Iterator for SplitRead<R> {
type Item = Result<Vec<u8>, std::io::Error>;
fn next(&mut self) -> Option<Self::Item> {
let buf = self.buf.as_mut()?;
let mut search_start = 0usize;
loop {
if let Some(i) = self.finder.find(&buf[search_start..]) {
let needle_idx = search_start + i;
let right = buf.split_off(needle_idx + self.finder.needle().len());
buf.truncate(needle_idx);
let left = std::mem::replace(buf, right);
return Some(Ok(left));
}
if let Some(mut r) = self.reader.take() {
search_start = buf.len().saturating_sub(self.finder.needle().len() + 1);
let available = match r.fill_buf() {
Ok(n) => n,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Some(Err(e)),
};
buf.extend_from_slice(available);
let used = available.len();
r.consume(used);
if used != 0 {
self.reader = Some(r);
}
continue;
} else {
return self.buf.take().map(Ok);
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::io::{self, Cursor, Read};
#[test]
fn simple() {
let s = "foo-bar-baz";
let cursor = Cursor::new(String::from(s));
let mut split =
SplitRead::new(cursor, "-").map(|r| String::from_utf8(r.unwrap()).unwrap());
assert_eq!(split.next().as_deref(), Some("foo"));
assert_eq!(split.next().as_deref(), Some("bar"));
assert_eq!(split.next().as_deref(), Some("baz"));
assert_eq!(split.next(), None);
}
#[test]
fn with_empty_fields() -> Result<(), io::Error> {
let s = "\0\0foo\0\0bar\0\0\0\0baz\0\0";
let cursor = Cursor::new(String::from(s));
let mut split =
SplitRead::new(cursor, "\0\0").map(|r| String::from_utf8(r.unwrap()).unwrap());
assert_eq!(split.next().as_deref(), Some(""));
assert_eq!(split.next().as_deref(), Some("foo"));
assert_eq!(split.next().as_deref(), Some("bar"));
assert_eq!(split.next().as_deref(), Some(""));
assert_eq!(split.next().as_deref(), Some("baz"));
assert_eq!(split.next().as_deref(), Some(""));
assert_eq!(split.next().as_deref(), None);
Ok(())
}
#[test]
fn complex_delimiter() -> Result<(), io::Error> {
let s = "<|>foo<|>bar<|><|>baz<|>";
let cursor = Cursor::new(String::from(s));
let mut split =
SplitRead::new(cursor, "<|>").map(|r| String::from_utf8(r.unwrap()).unwrap());
assert_eq!(split.next().as_deref(), Some(""));
assert_eq!(split.next().as_deref(), Some("foo"));
assert_eq!(split.next().as_deref(), Some("bar"));
assert_eq!(split.next().as_deref(), Some(""));
assert_eq!(split.next().as_deref(), Some("baz"));
assert_eq!(split.next().as_deref(), Some(""));
assert_eq!(split.next().as_deref(), None);
Ok(())
}
#[test]
fn all_empty() -> Result<(), io::Error> {
let s = "<><>";
let cursor = Cursor::new(String::from(s));
let mut split =
SplitRead::new(cursor, "<>").map(|r| String::from_utf8(r.unwrap()).unwrap());
assert_eq!(split.next().as_deref(), Some(""));
assert_eq!(split.next().as_deref(), Some(""));
assert_eq!(split.next().as_deref(), Some(""));
assert_eq!(split.next(), None);
Ok(())
}
#[should_panic = "delimiter can't be empty"]
#[test]
fn empty_delimiter() {
let s = "abc";
let cursor = Cursor::new(String::from(s));
let _split = SplitRead::new(cursor, "").map(|e| e.unwrap());
}
#[test]
fn delimiter_spread_across_reads() {
let reader = Cursor::new("<|>foo<|")
.chain(Cursor::new(">bar<|><"))
.chain(Cursor::new("|>baz<|>"));
let mut split =
SplitRead::new(reader, "<|>").map(|r| String::from_utf8(r.unwrap()).unwrap());
assert_eq!(split.next().unwrap(), "");
assert_eq!(split.next().unwrap(), "foo");
assert_eq!(split.next().unwrap(), "bar");
assert_eq!(split.next().unwrap(), "");
assert_eq!(split.next().unwrap(), "baz");
assert_eq!(split.next().unwrap(), "");
assert_eq!(split.next(), None);
}
}
}
pub struct SplitRead {
internal: split_read::SplitRead<BufReader<SourceReader>>,
span: Span,
signals: Signals,
}
impl SplitRead {
fn new(
reader: SourceReader,
delimiter: impl AsRef<[u8]>,
span: Span,
signals: Signals,
) -> Self {
Self {
internal: split_read::SplitRead::new(BufReader::new(reader), delimiter),
span,
signals,
}
}
pub fn span(&self) -> Span {
self.span
}
}
impl Iterator for SplitRead {
type Item = Result<Vec<u8>, ShellError>;
fn next(&mut self) -> Option<Self::Item> {
if self.signals.interrupted() {
return None;
}
self.internal.next().map(|r| {
r.map_err(|err| {
ShellError::Io(IoError::new_internal(
err.kind(),
"Could not get next value for SplitRead",
crate::location!(),
))
})
})
}
}
/// Turn a readable stream into [`Value`]s.
///
/// The `Value` type depends on the type of the stream ([`ByteStreamType`]). If `Unknown`, the
/// stream will return strings as long as UTF-8 parsing succeeds, but will start returning binary
/// if it fails.
pub struct Chunks {
reader: BufReader<SourceReader>,
pos: u64,
error: bool,
span: Span,
signals: Signals,
type_: ByteStreamType,
}
impl Chunks {
fn new(reader: SourceReader, span: Span, signals: Signals, type_: ByteStreamType) -> Self {
Self {
reader: BufReader::new(reader),
pos: 0,
error: false,
span,
signals,
type_,
}
}
pub fn span(&self) -> Span {
self.span
}
fn next_string(&mut self) -> Result<Option<String>, (Vec<u8>, ShellError)> {
let from_io_error = |err: std::io::Error| match ShellErrorBridge::try_from(err) {
Ok(err) => err.0,
Err(err) => IoError::new(err.kind(), self.span, None).into(),
};
// Get some data from the reader
let buf = self
.reader
.fill_buf()
.map_err(from_io_error)
.map_err(|err| (vec![], err))?;
// If empty, this is EOF
if buf.is_empty() {
return Ok(None);
}
let mut buf = buf.to_vec();
let mut consumed = 0;
// If the buf length is under 4 bytes, it could be invalid, so try to get more
if buf.len() < 4 {
consumed += buf.len();
self.reader.consume(buf.len());
match self.reader.fill_buf() {
Ok(more_bytes) => buf.extend_from_slice(more_bytes),
Err(err) => return Err((buf, from_io_error(err))),
}
}
// Try to parse utf-8 and decide what to do
match String::from_utf8(buf) {
Ok(string) => {
self.reader.consume(string.len() - consumed);
self.pos += string.len() as u64;
Ok(Some(string))
}
Err(err) if err.utf8_error().error_len().is_none() => {
// There is some valid data at the beginning, and this is just incomplete, so just
// consume that and return it
let valid_up_to = err.utf8_error().valid_up_to();
if valid_up_to > consumed {
self.reader.consume(valid_up_to - consumed);
}
let mut buf = err.into_bytes();
buf.truncate(valid_up_to);
buf.shrink_to_fit();
let string = String::from_utf8(buf)
.expect("failed to parse utf-8 even after correcting error");
self.pos += string.len() as u64;
Ok(Some(string))
}
Err(err) => {
// There is an error at the beginning and we have no hope of parsing further.
let shell_error = ShellError::NonUtf8Custom {
msg: format!("invalid utf-8 sequence starting at index {}", self.pos),
span: self.span,
};
let buf = err.into_bytes();
// We are consuming the entire buf though, because we're returning it in case it
// will be cast to binary
if buf.len() > consumed {
self.reader.consume(buf.len() - consumed);
}
self.pos += buf.len() as u64;
Err((buf, shell_error))
}
}
}
}
impl Iterator for Chunks {
type Item = Result<Value, ShellError>;
fn next(&mut self) -> Option<Self::Item> {
if self.error || self.signals.interrupted() {
None
} else {
match self.type_ {
// Binary should always be binary
ByteStreamType::Binary => {
let buf = match self.reader.fill_buf() {
Ok(buf) => buf,
Err(err) => {
self.error = true;
return Some(Err(ShellError::Io(IoError::new(
err.kind(),
self.span,
None,
))));
}
};
if !buf.is_empty() {
let len = buf.len();
let value = Value::binary(buf, self.span);
self.reader.consume(len);
self.pos += len as u64;
Some(Ok(value))
} else {
None
}
}
// String produces an error if UTF-8 can't be parsed
ByteStreamType::String => match self.next_string().transpose()? {
Ok(string) => Some(Ok(Value::string(string, self.span))),
Err((_, err)) => {
self.error = true;
Some(Err(err))
}
},
// For Unknown, we try to create strings, but we switch to binary mode if we
// fail
ByteStreamType::Unknown => {
match self.next_string().transpose()? {
Ok(string) => Some(Ok(Value::string(string, self.span))),
Err((buf, _)) if !buf.is_empty() => {
// Switch to binary mode
self.type_ = ByteStreamType::Binary;
Some(Ok(Value::binary(buf, self.span)))
}
Err((_, err)) => {
self.error = true;
Some(Err(err))
}
}
}
}
}
}
}
fn trim_end_newline(string: &mut String) {
if string.ends_with('\n') {
string.pop();
if string.ends_with('\r') {
string.pop();
}
}
}
#[cfg(unix)]
pub(crate) fn convert_file<T: From<OwnedFd>>(file: impl Into<OwnedFd>) -> T {
file.into().into()
}
#[cfg(windows)]
pub(crate) fn convert_file<T: From<OwnedHandle>>(file: impl Into<OwnedHandle>) -> T {
file.into().into()
}
const DEFAULT_BUF_SIZE: usize = 8192;
pub fn copy_with_signals(
mut reader: impl Read,
mut writer: impl Write,
span: Span,
signals: &Signals,
) -> Result<u64, ShellError> {
let from_io_error = IoError::factory(span, None);
if signals.is_empty() {
match io::copy(&mut reader, &mut writer) {
Ok(n) => {
writer.flush().map_err(&from_io_error)?;
Ok(n)
}
Err(err) => {
let _ = writer.flush();
match ShellErrorBridge::try_from(err) {
Ok(ShellErrorBridge(shell_error)) => Err(shell_error),
Err(err) => Err(from_io_error(err).into()),
}
}
}
} else {
// #[cfg(any(target_os = "linux", target_os = "android"))]
// {
// return crate::sys::kernel_copy::copy_spec(reader, writer);
// }
match generic_copy(&mut reader, &mut writer, span, signals) {
Ok(len) => {
writer.flush().map_err(&from_io_error)?;
Ok(len)
}
Err(err) => {
let _ = writer.flush();
Err(err)
}
}
}
}
// Copied from [`std::io::copy`]
fn generic_copy(
mut reader: impl Read,
mut writer: impl Write,
span: Span,
signals: &Signals,
) -> Result<u64, ShellError> {
let from_io_error = IoError::factory(span, None);
let buf = &mut [0; DEFAULT_BUF_SIZE];
let mut len = 0;
loop {
signals.check(span)?;
let n = match reader.read(buf) {
Ok(0) => break,
Ok(n) => n,
Err(e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => match ShellErrorBridge::try_from(e) {
Ok(ShellErrorBridge(e)) => return Err(e),
Err(e) => return Err(from_io_error(e).into()),
},
};
len += n;
writer.write_all(&buf[..n]).map_err(&from_io_error)?;
}
Ok(len as u64)
}
struct ReadGenerator<F>
where
F: FnMut(&mut Vec<u8>) -> Result<bool, ShellError> + Send + 'static,
{
buffer: Cursor<Vec<u8>>,
generator: F,
}
impl<F> BufRead for ReadGenerator<F>
where
F: FnMut(&mut Vec<u8>) -> Result<bool, ShellError> + Send + 'static,
{
fn fill_buf(&mut self) -> std::io::Result<&[u8]> {
// We have to loop, because it's important that we don't leave the buffer empty unless we're
// truly at the end of the stream.
while self.buffer.fill_buf()?.is_empty() {
// Reset the cursor to the beginning and truncate
self.buffer.set_position(0);
self.buffer.get_mut().clear();
// Ask the generator to generate data
if !(self.generator)(self.buffer.get_mut()).map_err(ShellErrorBridge)? {
// End of stream
break;
}
}
self.buffer.fill_buf()
}
fn consume(&mut self, amt: usize) {
self.buffer.consume(amt);
}
}
impl<F> Read for ReadGenerator<F>
where
F: FnMut(&mut Vec<u8>) -> Result<bool, ShellError> + Send + 'static,
{
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
// Straightforward implementation on top of BufRead
let slice = self.fill_buf()?;
let len = buf.len().min(slice.len());
buf[..len].copy_from_slice(&slice[..len]);
self.consume(len);
Ok(len)
}
}
#[cfg(test)]
mod tests {
use super::*;
fn test_chunks<T>(data: Vec<T>, type_: ByteStreamType) -> Chunks
where
T: AsRef<[u8]> + Default + Send + 'static,
{
let reader = ReadIterator {
iter: data.into_iter(),
cursor: Some(Cursor::new(T::default())),
};
Chunks::new(
SourceReader::Read(Box::new(reader)),
Span::test_data(),
Signals::empty(),
type_,
)
}
#[test]
fn chunks_read_binary_passthrough() {
let bins = vec![&[0, 1][..], &[2, 3][..]];
let iter = test_chunks(bins.clone(), ByteStreamType::Binary);
let bins_values: Vec<Value> = bins
.into_iter()
.map(|bin| Value::binary(bin, Span::test_data()))
.collect();
assert_eq!(
bins_values,
iter.collect::<Result<Vec<Value>, _>>().expect("error")
);
}
#[test]
fn chunks_read_string_clean() {
let strs = vec!["Nushell", "が好きです"];
let iter = test_chunks(strs.clone(), ByteStreamType::String);
let strs_values: Vec<Value> = strs
.into_iter()
.map(|string| Value::string(string, Span::test_data()))
.collect();
assert_eq!(
strs_values,
iter.collect::<Result<Vec<Value>, _>>().expect("error")
);
}
#[test]
fn chunks_read_string_split_boundary() {
let real = "Nushell最高!";
let chunks = vec![&b"Nushell\xe6"[..], &b"\x9c\x80\xe9"[..], &b"\xab\x98!"[..]];
let iter = test_chunks(chunks.clone(), ByteStreamType::String);
let mut string = String::new();
for value in iter {
let chunk_string = value.expect("error").into_string().expect("not a string");
string.push_str(&chunk_string);
}
assert_eq!(real, string);
}
#[test]
fn chunks_read_string_utf8_error() {
let chunks = vec![&b"Nushell\xe6"[..], &b"\x9c\x80\xe9"[..], &b"\xab"[..]];
let iter = test_chunks(chunks, ByteStreamType::String);
let mut string = String::new();
for value in iter {
match value {
Ok(value) => string.push_str(&value.into_string().expect("not a string")),
Err(err) => {
println!("string so far: {:?}", string);
println!("got error: {err:?}");
assert!(!string.is_empty());
assert!(matches!(err, ShellError::NonUtf8Custom { .. }));
return;
}
}
}
panic!("no error");
}
#[test]
fn chunks_read_unknown_fallback() {
let chunks = vec![&b"Nushell"[..], &b"\x9c\x80\xe9abcd"[..], &b"efgh"[..]];
let mut iter = test_chunks(chunks, ByteStreamType::Unknown);
let mut get = || iter.next().expect("end of iter").expect("error");
assert_eq!(Value::test_string("Nushell"), get());
assert_eq!(Value::test_binary(b"\x9c\x80\xe9abcd"), get());
// Once it's in binary mode it won't go back
assert_eq!(Value::test_binary(b"efgh"), get());
}
}