nu_protocol/pipeline/
pipeline_data.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
use crate::{
    ast::{Call, PathMember},
    engine::{EngineState, Stack},
    ByteStream, ByteStreamType, Config, ListStream, OutDest, PipelineMetadata, Range, ShellError,
    Signals, Span, Type, Value,
};
use nu_utils::{stderr_write_all_and_flush, stdout_write_all_and_flush};
use std::io::Write;

const LINE_ENDING_PATTERN: &[char] = &['\r', '\n'];

/// The foundational abstraction for input and output to commands
///
/// This represents either a single Value or a stream of values coming into the command or leaving a command.
///
/// A note on implementation:
///
/// We've tried a few variations of this structure. Listing these below so we have a record.
///
/// * We tried always assuming a stream in Nushell. This was a great 80% solution, but it had some rough edges.
///   Namely, how do you know the difference between a single string and a list of one string. How do you know
///   when to flatten the data given to you from a data source into the stream or to keep it as an unflattened
///   list?
///
/// * We tried putting the stream into Value. This had some interesting properties as now commands "just worked
///   on values", but lead to a few unfortunate issues.
///
/// The first is that you can't easily clone Values in a way that felt largely immutable. For example, if
/// you cloned a Value which contained a stream, and in one variable drained some part of it, then the second
/// variable would see different values based on what you did to the first.
///
/// To make this kind of mutation thread-safe, we would have had to produce a lock for the stream, which in
/// practice would have meant always locking the stream before reading from it. But more fundamentally, it
/// felt wrong in practice that observation of a value at runtime could affect other values which happen to
/// alias the same stream. By separating these, we don't have this effect. Instead, variables could get
/// concrete list values rather than streams, and be able to view them without non-local effects.
///
/// * A balance of the two approaches is what we've landed on: Values are thread-safe to pass, and we can stream
///   them into any sources. Streams are still available to model the infinite streams approach of original
///   Nushell.
#[derive(Debug)]
pub enum PipelineData {
    Empty,
    Value(Value, Option<PipelineMetadata>),
    ListStream(ListStream, Option<PipelineMetadata>),
    ByteStream(ByteStream, Option<PipelineMetadata>),
}

impl PipelineData {
    pub fn empty() -> PipelineData {
        PipelineData::Empty
    }

    pub fn metadata(&self) -> Option<PipelineMetadata> {
        match self {
            PipelineData::Empty => None,
            PipelineData::Value(_, meta)
            | PipelineData::ListStream(_, meta)
            | PipelineData::ByteStream(_, meta) => meta.clone(),
        }
    }

    pub fn set_metadata(mut self, metadata: Option<PipelineMetadata>) -> Self {
        match &mut self {
            PipelineData::Empty => {}
            PipelineData::Value(_, meta)
            | PipelineData::ListStream(_, meta)
            | PipelineData::ByteStream(_, meta) => *meta = metadata,
        }
        self
    }

    pub fn is_nothing(&self) -> bool {
        matches!(self, PipelineData::Value(Value::Nothing { .. }, ..))
            || matches!(self, PipelineData::Empty)
    }

    /// PipelineData doesn't always have a Span, but we can try!
    pub fn span(&self) -> Option<Span> {
        match self {
            PipelineData::Empty => None,
            PipelineData::Value(value, ..) => Some(value.span()),
            PipelineData::ListStream(stream, ..) => Some(stream.span()),
            PipelineData::ByteStream(stream, ..) => Some(stream.span()),
        }
    }

    /// Change the span of the [`PipelineData`].
    ///
    /// Returns `Value(Nothing)` with the given span if it was [`PipelineData::Empty`].
    pub fn with_span(self, span: Span) -> Self {
        match self {
            PipelineData::Empty => PipelineData::Value(Value::nothing(span), None),
            PipelineData::Value(value, metadata) => {
                PipelineData::Value(value.with_span(span), metadata)
            }
            PipelineData::ListStream(stream, metadata) => {
                PipelineData::ListStream(stream.with_span(span), metadata)
            }
            PipelineData::ByteStream(stream, metadata) => {
                PipelineData::ByteStream(stream.with_span(span), metadata)
            }
        }
    }

    /// Get a type that is representative of the `PipelineData`.
    ///
    /// The type returned here makes no effort to collect a stream, so it may be a different type
    /// than would be returned by [`Value::get_type()`] on the result of
    /// [`.into_value()`](Self::into_value).
    ///
    /// Specifically, a `ListStream` results in [`list stream`](Type::ListStream) rather than
    /// the fully complete [`list`](Type::List) type (which would require knowing the contents),
    /// and a `ByteStream` with [unknown](crate::ByteStreamType::Unknown) type results in
    /// [`any`](Type::Any) rather than [`string`](Type::String) or [`binary`](Type::Binary).
    pub fn get_type(&self) -> Type {
        match self {
            PipelineData::Empty => Type::Nothing,
            PipelineData::Value(value, _) => value.get_type(),
            PipelineData::ListStream(_, _) => Type::ListStream,
            PipelineData::ByteStream(stream, _) => stream.type_().into(),
        }
    }

    pub fn into_value(self, span: Span) -> Result<Value, ShellError> {
        match self {
            PipelineData::Empty => Ok(Value::nothing(span)),
            PipelineData::Value(value, ..) => Ok(value.with_span(span)),
            PipelineData::ListStream(stream, ..) => Ok(stream.into_value()),
            PipelineData::ByteStream(stream, ..) => stream.into_value(),
        }
    }

    /// Converts any `Value` variant that can be represented as a stream into its stream variant.
    ///
    /// This means that lists and ranges are converted into list streams, and strings and binary are
    /// converted into byte streams.
    ///
    /// Returns an `Err` with the original stream if the variant couldn't be converted to a stream
    /// variant. If the variant is already a stream variant, it is returned as-is.
    pub fn try_into_stream(self, engine_state: &EngineState) -> Result<PipelineData, PipelineData> {
        let span = self.span().unwrap_or(Span::unknown());
        match self {
            PipelineData::ListStream(..) | PipelineData::ByteStream(..) => Ok(self),
            PipelineData::Value(Value::List { .. } | Value::Range { .. }, ref metadata) => {
                let metadata = metadata.clone();
                Ok(PipelineData::ListStream(
                    ListStream::new(self.into_iter(), span, engine_state.signals().clone()),
                    metadata,
                ))
            }
            PipelineData::Value(Value::String { val, .. }, metadata) => {
                Ok(PipelineData::ByteStream(
                    ByteStream::read_string(val, span, engine_state.signals().clone()),
                    metadata,
                ))
            }
            PipelineData::Value(Value::Binary { val, .. }, metadata) => {
                Ok(PipelineData::ByteStream(
                    ByteStream::read_binary(val, span, engine_state.signals().clone()),
                    metadata,
                ))
            }
            _ => Err(self),
        }
    }

    /// Drain and write this [`PipelineData`] to `dest`.
    ///
    /// Values are converted to bytes and separated by newlines if this is a `ListStream`.
    pub fn write_to(self, mut dest: impl Write) -> Result<(), ShellError> {
        match self {
            PipelineData::Empty => Ok(()),
            PipelineData::Value(value, ..) => {
                let bytes = value_to_bytes(value)?;
                dest.write_all(&bytes)?;
                dest.flush()?;
                Ok(())
            }
            PipelineData::ListStream(stream, ..) => {
                for value in stream {
                    let bytes = value_to_bytes(value)?;
                    dest.write_all(&bytes)?;
                    dest.write_all(b"\n")?;
                }
                dest.flush()?;
                Ok(())
            }
            PipelineData::ByteStream(stream, ..) => stream.write_to(dest),
        }
    }

    /// Drain this [`PipelineData`] according to the current stdout [`OutDest`]s in `stack`.
    ///
    /// For [`OutDest::Pipe`] and [`OutDest::PipeSeparate`], this will return the [`PipelineData`]
    /// as is. For [`OutDest::Value`], this will collect into a value and return it. For
    /// [`OutDest::Print`], the [`PipelineData`] is drained and printed. Otherwise, the
    /// [`PipelineData`] is drained, but only printed if it is the output of an external command.
    pub fn drain_to_out_dests(
        self,
        engine_state: &EngineState,
        stack: &mut Stack,
    ) -> Result<Self, ShellError> {
        match stack.pipe_stdout().unwrap_or(&OutDest::Inherit) {
            OutDest::Print => {
                self.print(engine_state, stack, false, false)?;
                Ok(Self::Empty)
            }
            OutDest::Pipe | OutDest::PipeSeparate => Ok(self),
            OutDest::Value => {
                let metadata = self.metadata();
                let span = self.span().unwrap_or(Span::unknown());
                self.into_value(span).map(|val| Self::Value(val, metadata))
            }
            OutDest::File(file) => {
                self.write_to(file.as_ref())?;
                Ok(Self::Empty)
            }
            OutDest::Null | OutDest::Inherit => {
                self.drain()?;
                Ok(Self::Empty)
            }
        }
    }

    pub fn drain(self) -> Result<(), ShellError> {
        match self {
            Self::Empty => Ok(()),
            Self::Value(Value::Error { error, .. }, ..) => Err(*error),
            Self::Value(..) => Ok(()),
            Self::ListStream(stream, ..) => stream.drain(),
            Self::ByteStream(stream, ..) => stream.drain(),
        }
    }

    /// Try convert from self into iterator
    ///
    /// It returns Err if the `self` cannot be converted to an iterator.
    ///
    /// The `span` should be the span of the command or operation that would raise an error.
    pub fn into_iter_strict(self, span: Span) -> Result<PipelineIterator, ShellError> {
        Ok(PipelineIterator(match self {
            PipelineData::Value(value, ..) => {
                let val_span = value.span();
                match value {
                    Value::List { vals, .. } => PipelineIteratorInner::ListStream(
                        ListStream::new(vals.into_iter(), val_span, Signals::empty()).into_iter(),
                    ),
                    Value::Binary { val, .. } => PipelineIteratorInner::ListStream(
                        ListStream::new(
                            val.into_iter().map(move |x| Value::int(x as i64, val_span)),
                            val_span,
                            Signals::empty(),
                        )
                        .into_iter(),
                    ),
                    Value::Range { val, .. } => PipelineIteratorInner::ListStream(
                        ListStream::new(
                            val.into_range_iter(val_span, Signals::empty()),
                            val_span,
                            Signals::empty(),
                        )
                        .into_iter(),
                    ),
                    // Propagate errors by explicitly matching them before the final case.
                    Value::Error { error, .. } => return Err(*error),
                    other => {
                        return Err(ShellError::OnlySupportsThisInputType {
                            exp_input_type: "list, binary, range, or byte stream".into(),
                            wrong_type: other.get_type().to_string(),
                            dst_span: span,
                            src_span: val_span,
                        })
                    }
                }
            }
            PipelineData::ListStream(stream, ..) => {
                PipelineIteratorInner::ListStream(stream.into_iter())
            }
            PipelineData::Empty => {
                return Err(ShellError::OnlySupportsThisInputType {
                    exp_input_type: "list, binary, range, or byte stream".into(),
                    wrong_type: "null".into(),
                    dst_span: span,
                    src_span: span,
                })
            }
            PipelineData::ByteStream(stream, ..) => {
                if let Some(chunks) = stream.chunks() {
                    PipelineIteratorInner::ByteStream(chunks)
                } else {
                    PipelineIteratorInner::Empty
                }
            }
        }))
    }

    pub fn collect_string(self, separator: &str, config: &Config) -> Result<String, ShellError> {
        match self {
            PipelineData::Empty => Ok(String::new()),
            PipelineData::Value(value, ..) => Ok(value.to_expanded_string(separator, config)),
            PipelineData::ListStream(stream, ..) => Ok(stream.into_string(separator, config)),
            PipelineData::ByteStream(stream, ..) => stream.into_string(),
        }
    }

    /// Retrieves string from pipeline data.
    ///
    /// As opposed to `collect_string` this raises error rather than converting non-string values.
    /// The `span` will be used if `ListStream` is encountered since it doesn't carry a span.
    pub fn collect_string_strict(
        self,
        span: Span,
    ) -> Result<(String, Span, Option<PipelineMetadata>), ShellError> {
        match self {
            PipelineData::Empty => Ok((String::new(), span, None)),
            PipelineData::Value(Value::String { val, .. }, metadata) => Ok((val, span, metadata)),
            PipelineData::Value(val, ..) => Err(ShellError::TypeMismatch {
                err_message: "string".into(),
                span: val.span(),
            }),
            PipelineData::ListStream(..) => Err(ShellError::TypeMismatch {
                err_message: "string".into(),
                span,
            }),
            PipelineData::ByteStream(stream, metadata) => {
                let span = stream.span();
                Ok((stream.into_string()?, span, metadata))
            }
        }
    }

    pub fn follow_cell_path(
        self,
        cell_path: &[PathMember],
        head: Span,
        insensitive: bool,
    ) -> Result<Value, ShellError> {
        match self {
            // FIXME: there are probably better ways of doing this
            PipelineData::ListStream(stream, ..) => Value::list(stream.into_iter().collect(), head)
                .follow_cell_path(cell_path, insensitive),
            PipelineData::Value(v, ..) => v.follow_cell_path(cell_path, insensitive),
            PipelineData::Empty => Err(ShellError::IncompatiblePathAccess {
                type_name: "empty pipeline".to_string(),
                span: head,
            }),
            PipelineData::ByteStream(stream, ..) => Err(ShellError::IncompatiblePathAccess {
                type_name: stream.type_().describe().to_owned(),
                span: stream.span(),
            }),
        }
    }

    /// Simplified mapper to help with simple values also. For full iterator support use `.into_iter()` instead
    pub fn map<F>(self, mut f: F, signals: &Signals) -> Result<PipelineData, ShellError>
    where
        Self: Sized,
        F: FnMut(Value) -> Value + 'static + Send,
    {
        match self {
            PipelineData::Value(value, metadata) => {
                let span = value.span();
                let pipeline = match value {
                    Value::List { vals, .. } => vals
                        .into_iter()
                        .map(f)
                        .into_pipeline_data(span, signals.clone()),
                    Value::Range { val, .. } => val
                        .into_range_iter(span, Signals::empty())
                        .map(f)
                        .into_pipeline_data(span, signals.clone()),
                    value => match f(value) {
                        Value::Error { error, .. } => return Err(*error),
                        v => v.into_pipeline_data(),
                    },
                };
                Ok(pipeline.set_metadata(metadata))
            }
            PipelineData::Empty => Ok(PipelineData::Empty),
            PipelineData::ListStream(stream, metadata) => {
                Ok(PipelineData::ListStream(stream.map(f), metadata))
            }
            PipelineData::ByteStream(stream, metadata) => {
                Ok(f(stream.into_value()?).into_pipeline_data_with_metadata(metadata))
            }
        }
    }

    /// Simplified flatmapper. For full iterator support use `.into_iter()` instead
    pub fn flat_map<U, F>(self, mut f: F, signals: &Signals) -> Result<PipelineData, ShellError>
    where
        Self: Sized,
        U: IntoIterator<Item = Value> + 'static,
        <U as IntoIterator>::IntoIter: 'static + Send,
        F: FnMut(Value) -> U + 'static + Send,
    {
        match self {
            PipelineData::Empty => Ok(PipelineData::Empty),
            PipelineData::Value(value, metadata) => {
                let span = value.span();
                let pipeline = match value {
                    Value::List { vals, .. } => vals
                        .into_iter()
                        .flat_map(f)
                        .into_pipeline_data(span, signals.clone()),
                    Value::Range { val, .. } => val
                        .into_range_iter(span, Signals::empty())
                        .flat_map(f)
                        .into_pipeline_data(span, signals.clone()),
                    value => f(value)
                        .into_iter()
                        .into_pipeline_data(span, signals.clone()),
                };
                Ok(pipeline.set_metadata(metadata))
            }
            PipelineData::ListStream(stream, metadata) => Ok(PipelineData::ListStream(
                stream.modify(|iter| iter.flat_map(f)),
                metadata,
            )),
            PipelineData::ByteStream(stream, metadata) => {
                // TODO: is this behavior desired / correct ?
                let span = stream.span();
                let iter = match String::from_utf8(stream.into_bytes()?) {
                    Ok(mut str) => {
                        str.truncate(str.trim_end_matches(LINE_ENDING_PATTERN).len());
                        f(Value::string(str, span))
                    }
                    Err(err) => f(Value::binary(err.into_bytes(), span)),
                };
                Ok(iter.into_iter().into_pipeline_data_with_metadata(
                    span,
                    signals.clone(),
                    metadata,
                ))
            }
        }
    }

    pub fn filter<F>(self, mut f: F, signals: &Signals) -> Result<PipelineData, ShellError>
    where
        Self: Sized,
        F: FnMut(&Value) -> bool + 'static + Send,
    {
        match self {
            PipelineData::Empty => Ok(PipelineData::Empty),
            PipelineData::Value(value, metadata) => {
                let span = value.span();
                let pipeline = match value {
                    Value::List { vals, .. } => vals
                        .into_iter()
                        .filter(f)
                        .into_pipeline_data(span, signals.clone()),
                    Value::Range { val, .. } => val
                        .into_range_iter(span, Signals::empty())
                        .filter(f)
                        .into_pipeline_data(span, signals.clone()),
                    value => {
                        if f(&value) {
                            value.into_pipeline_data()
                        } else {
                            Value::nothing(span).into_pipeline_data()
                        }
                    }
                };
                Ok(pipeline.set_metadata(metadata))
            }
            PipelineData::ListStream(stream, metadata) => Ok(PipelineData::ListStream(
                stream.modify(|iter| iter.filter(f)),
                metadata,
            )),
            PipelineData::ByteStream(stream, metadata) => {
                // TODO: is this behavior desired / correct ?
                let span = stream.span();
                let value = match String::from_utf8(stream.into_bytes()?) {
                    Ok(mut str) => {
                        str.truncate(str.trim_end_matches(LINE_ENDING_PATTERN).len());
                        Value::string(str, span)
                    }
                    Err(err) => Value::binary(err.into_bytes(), span),
                };
                let value = if f(&value) {
                    value
                } else {
                    Value::nothing(span)
                };
                Ok(value.into_pipeline_data_with_metadata(metadata))
            }
        }
    }

    /// Try to convert Value from Value::Range to Value::List.
    /// This is useful to expand Value::Range into array notation, specifically when
    /// converting `to json` or `to nuon`.
    /// `1..3 | to XX -> [1,2,3]`
    pub fn try_expand_range(self) -> Result<PipelineData, ShellError> {
        match self {
            PipelineData::Value(v, metadata) => {
                let span = v.span();
                match v {
                    Value::Range { val, .. } => {
                        match *val {
                            Range::IntRange(range) => {
                                if range.is_unbounded() {
                                    return Err(ShellError::GenericError {
                                        error: "Cannot create range".into(),
                                        msg: "Unbounded ranges are not allowed when converting to this format".into(),
                                        span: Some(span),
                                        help: Some("Consider using ranges with valid start and end point.".into()),
                                        inner: vec![],
                                    });
                                }
                            }
                            Range::FloatRange(range) => {
                                if range.is_unbounded() {
                                    return Err(ShellError::GenericError {
                                        error: "Cannot create range".into(),
                                        msg: "Unbounded ranges are not allowed when converting to this format".into(),
                                        span: Some(span),
                                        help: Some("Consider using ranges with valid start and end point.".into()),
                                        inner: vec![],
                                    });
                                }
                            }
                        }
                        let range_values: Vec<Value> =
                            val.into_range_iter(span, Signals::empty()).collect();
                        Ok(PipelineData::Value(Value::list(range_values, span), None))
                    }
                    x => Ok(PipelineData::Value(x, metadata)),
                }
            }
            _ => Ok(self),
        }
    }

    /// Consume and print self data immediately.
    ///
    /// `no_newline` controls if we need to attach newline character to output.
    /// `to_stderr` controls if data is output to stderr, when the value is false, the data is output to stdout.
    pub fn print(
        self,
        engine_state: &EngineState,
        stack: &mut Stack,
        no_newline: bool,
        to_stderr: bool,
    ) -> Result<(), ShellError> {
        match self {
            // Print byte streams directly as long as they aren't binary.
            PipelineData::ByteStream(stream, ..) if stream.type_() != ByteStreamType::Binary => {
                stream.print(to_stderr)
            }
            _ => {
                // If the table function is in the declarations, then we can use it
                // to create the table value that will be printed in the terminal
                if let Some(decl_id) = engine_state.table_decl_id {
                    let command = engine_state.get_decl(decl_id);
                    if command.block_id().is_some() {
                        self.write_all_and_flush(engine_state, no_newline, to_stderr)
                    } else {
                        let call = Call::new(Span::new(0, 0));
                        let table = command.run(engine_state, stack, &(&call).into(), self)?;
                        table.write_all_and_flush(engine_state, no_newline, to_stderr)
                    }
                } else {
                    self.write_all_and_flush(engine_state, no_newline, to_stderr)
                }
            }
        }
    }

    /// Consume and print self data without any extra formatting.
    ///
    /// This does not use the `table` command to format data, and also prints binary values and
    /// streams in their raw format without generating a hexdump first.
    ///
    /// `no_newline` controls if we need to attach newline character to output.
    /// `to_stderr` controls if data is output to stderr, when the value is false, the data is output to stdout.
    pub fn print_raw(
        self,
        engine_state: &EngineState,
        no_newline: bool,
        to_stderr: bool,
    ) -> Result<(), ShellError> {
        if let PipelineData::Value(Value::Binary { val: bytes, .. }, _) = self {
            if to_stderr {
                stderr_write_all_and_flush(bytes)?;
            } else {
                stdout_write_all_and_flush(bytes)?;
            }
            Ok(())
        } else {
            self.write_all_and_flush(engine_state, no_newline, to_stderr)
        }
    }

    fn write_all_and_flush(
        self,
        engine_state: &EngineState,
        no_newline: bool,
        to_stderr: bool,
    ) -> Result<(), ShellError> {
        if let PipelineData::ByteStream(stream, ..) = self {
            // Copy ByteStreams directly
            stream.print(to_stderr)
        } else {
            let config = engine_state.get_config();
            for item in self {
                let mut out = if let Value::Error { error, .. } = item {
                    return Err(*error);
                } else {
                    item.to_expanded_string("\n", config)
                };

                if !no_newline {
                    out.push('\n');
                }

                if to_stderr {
                    stderr_write_all_and_flush(out)?
                } else {
                    stdout_write_all_and_flush(out)?
                }
            }

            Ok(())
        }
    }

    pub fn unsupported_input_error(
        self,
        expected_type: impl Into<String>,
        span: Span,
    ) -> ShellError {
        match self {
            PipelineData::Empty => ShellError::PipelineEmpty { dst_span: span },
            PipelineData::Value(value, ..) => ShellError::OnlySupportsThisInputType {
                exp_input_type: expected_type.into(),
                wrong_type: value.get_type().get_non_specified_string(),
                dst_span: span,
                src_span: value.span(),
            },
            PipelineData::ListStream(stream, ..) => ShellError::OnlySupportsThisInputType {
                exp_input_type: expected_type.into(),
                wrong_type: "list (stream)".into(),
                dst_span: span,
                src_span: stream.span(),
            },
            PipelineData::ByteStream(stream, ..) => ShellError::OnlySupportsThisInputType {
                exp_input_type: expected_type.into(),
                wrong_type: stream.type_().describe().into(),
                dst_span: span,
                src_span: stream.span(),
            },
        }
    }
}

enum PipelineIteratorInner {
    Empty,
    Value(Value),
    ListStream(crate::list_stream::IntoIter),
    ByteStream(crate::byte_stream::Chunks),
}

pub struct PipelineIterator(PipelineIteratorInner);

impl IntoIterator for PipelineData {
    type Item = Value;

    type IntoIter = PipelineIterator;

    fn into_iter(self) -> Self::IntoIter {
        PipelineIterator(match self {
            PipelineData::Empty => PipelineIteratorInner::Empty,
            PipelineData::Value(value, ..) => {
                let span = value.span();
                match value {
                    Value::List { vals, .. } => PipelineIteratorInner::ListStream(
                        ListStream::new(vals.into_iter(), span, Signals::empty()).into_iter(),
                    ),
                    Value::Range { val, .. } => PipelineIteratorInner::ListStream(
                        ListStream::new(
                            val.into_range_iter(span, Signals::empty()),
                            span,
                            Signals::empty(),
                        )
                        .into_iter(),
                    ),
                    x => PipelineIteratorInner::Value(x),
                }
            }
            PipelineData::ListStream(stream, ..) => {
                PipelineIteratorInner::ListStream(stream.into_iter())
            }
            PipelineData::ByteStream(stream, ..) => stream.chunks().map_or(
                PipelineIteratorInner::Empty,
                PipelineIteratorInner::ByteStream,
            ),
        })
    }
}

impl Iterator for PipelineIterator {
    type Item = Value;

    fn next(&mut self) -> Option<Self::Item> {
        match &mut self.0 {
            PipelineIteratorInner::Empty => None,
            PipelineIteratorInner::Value(Value::Nothing { .. }, ..) => None,
            PipelineIteratorInner::Value(v, ..) => Some(std::mem::take(v)),
            PipelineIteratorInner::ListStream(stream, ..) => stream.next(),
            PipelineIteratorInner::ByteStream(stream) => stream.next().map(|x| match x {
                Ok(x) => x,
                Err(err) => Value::error(
                    err,
                    Span::unknown(), //FIXME: unclear where this span should come from
                ),
            }),
        }
    }
}

pub trait IntoPipelineData {
    fn into_pipeline_data(self) -> PipelineData;

    fn into_pipeline_data_with_metadata(
        self,
        metadata: impl Into<Option<PipelineMetadata>>,
    ) -> PipelineData;
}

impl<V> IntoPipelineData for V
where
    V: Into<Value>,
{
    fn into_pipeline_data(self) -> PipelineData {
        PipelineData::Value(self.into(), None)
    }

    fn into_pipeline_data_with_metadata(
        self,
        metadata: impl Into<Option<PipelineMetadata>>,
    ) -> PipelineData {
        PipelineData::Value(self.into(), metadata.into())
    }
}

pub trait IntoInterruptiblePipelineData {
    fn into_pipeline_data(self, span: Span, signals: Signals) -> PipelineData;
    fn into_pipeline_data_with_metadata(
        self,
        span: Span,
        signals: Signals,
        metadata: impl Into<Option<PipelineMetadata>>,
    ) -> PipelineData;
}

impl<I> IntoInterruptiblePipelineData for I
where
    I: IntoIterator + Send + 'static,
    I::IntoIter: Send + 'static,
    <I::IntoIter as Iterator>::Item: Into<Value>,
{
    fn into_pipeline_data(self, span: Span, signals: Signals) -> PipelineData {
        ListStream::new(self.into_iter().map(Into::into), span, signals).into()
    }

    fn into_pipeline_data_with_metadata(
        self,
        span: Span,
        signals: Signals,
        metadata: impl Into<Option<PipelineMetadata>>,
    ) -> PipelineData {
        PipelineData::ListStream(
            ListStream::new(self.into_iter().map(Into::into), span, signals),
            metadata.into(),
        )
    }
}

fn value_to_bytes(value: Value) -> Result<Vec<u8>, ShellError> {
    let bytes = match value {
        Value::String { val, .. } => val.into_bytes(),
        Value::Binary { val, .. } => val,
        Value::List { vals, .. } => {
            let val = vals
                .into_iter()
                .map(Value::coerce_into_string)
                .collect::<Result<Vec<String>, ShellError>>()?
                .join("\n")
                + "\n";

            val.into_bytes()
        }
        // Propagate errors by explicitly matching them before the final case.
        Value::Error { error, .. } => return Err(*error),
        value => value.coerce_into_string()?.into_bytes(),
    };
    Ok(bytes)
}