1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
//! Randomization of big integers

use rand::distributions::uniform::{SampleBorrow, SampleUniform, UniformSampler};
use rand::prelude::*;
use rand::Rng;

use BigInt;
use BigUint;
use Sign::*;

use big_digit::BigDigit;
use bigint::{into_magnitude, magnitude};
use integer::Integer;
#[cfg(feature = "prime")]
use num_iter::range_step;
use num_traits::Zero;
#[cfg(feature = "prime")]
use num_traits::{FromPrimitive, ToPrimitive};

#[cfg(feature = "prime")]
use crate::prime::probably_prime;

pub trait RandBigInt {
    /// Generate a random `BigUint` of the given bit size.
    fn gen_biguint(&mut self, bit_size: usize) -> BigUint;

    /// Generate a random BigInt of the given bit size.
    fn gen_bigint(&mut self, bit_size: usize) -> BigInt;

    /// Generate a random `BigUint` less than the given bound. Fails
    /// when the bound is zero.
    fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint;

    /// Generate a random `BigUint` within the given range. The lower
    /// bound is inclusive; the upper bound is exclusive. Fails when
    /// the upper bound is not greater than the lower bound.
    fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint;

    /// Generate a random `BigInt` within the given range. The lower
    /// bound is inclusive; the upper bound is exclusive. Fails when
    /// the upper bound is not greater than the lower bound.
    fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt;
}

impl<R: Rng + ?Sized> RandBigInt for R {
    fn gen_biguint(&mut self, bit_size: usize) -> BigUint {
        use super::big_digit::BITS;
        let (digits, rem) = bit_size.div_rem(&BITS);
        let mut data = smallvec![BigDigit::default(); digits + (rem > 0) as usize];

        // `fill` is faster than many `gen::<u32>` calls
        // Internally this calls `SeedableRng` where implementors are responsible for adjusting endianness for reproducable values.
        self.fill(data.as_mut_slice());

        if rem > 0 {
            data[digits] >>= BITS - rem;
        }
        BigUint::new_native(data)
    }

    fn gen_bigint(&mut self, bit_size: usize) -> BigInt {
        loop {
            // Generate a random BigUint...
            let biguint = self.gen_biguint(bit_size);
            // ...and then randomly assign it a Sign...
            let sign = if biguint.is_zero() {
                // ...except that if the BigUint is zero, we need to try
                // again with probability 0.5. This is because otherwise,
                // the probability of generating a zero BigInt would be
                // double that of any other number.
                if self.gen() {
                    continue;
                } else {
                    NoSign
                }
            } else if self.gen() {
                Plus
            } else {
                Minus
            };
            return BigInt::from_biguint(sign, biguint);
        }
    }

    fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint {
        assert!(!bound.is_zero());
        let bits = bound.bits();
        loop {
            let n = self.gen_biguint(bits);
            if n < *bound {
                return n;
            }
        }
    }

    fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint {
        assert!(*lbound < *ubound);
        if lbound.is_zero() {
            self.gen_biguint_below(ubound)
        } else {
            lbound + self.gen_biguint_below(&(ubound - lbound))
        }
    }

    fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt {
        assert!(*lbound < *ubound);
        if lbound.is_zero() {
            BigInt::from(self.gen_biguint_below(magnitude(&ubound)))
        } else if ubound.is_zero() {
            lbound + BigInt::from(self.gen_biguint_below(magnitude(&lbound)))
        } else {
            let delta = ubound - lbound;
            lbound + BigInt::from(self.gen_biguint_below(magnitude(&delta)))
        }
    }
}

/// The back-end implementing rand's `UniformSampler` for `BigUint`.
#[derive(Clone, Debug)]
pub struct UniformBigUint {
    base: BigUint,
    len: BigUint,
}

impl UniformSampler for UniformBigUint {
    type X = BigUint;

    #[inline]
    fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = low_b.borrow();
        let high = high_b.borrow();

        assert!(low < high);

        UniformBigUint {
            len: high - low,
            base: low.clone(),
        }
    }

    #[inline]
    fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        Self::new(low_b, high_b.borrow() + 1u32)
    }

    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
        &self.base + rng.gen_biguint_below(&self.len)
    }

    #[inline]
    fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = low_b.borrow();
        let high = high_b.borrow();

        rng.gen_biguint_range(low, high)
    }
}

impl SampleUniform for BigUint {
    type Sampler = UniformBigUint;
}

/// The back-end implementing rand's `UniformSampler` for `BigInt`.
#[derive(Clone, Debug)]
pub struct UniformBigInt {
    base: BigInt,
    len: BigUint,
}

impl UniformSampler for UniformBigInt {
    type X = BigInt;

    #[inline]
    #[inline]
    fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = low_b.borrow();
        let high = high_b.borrow();

        assert!(low < high);
        UniformBigInt {
            len: into_magnitude(high - low),
            base: low.clone(),
        }
    }

    #[inline]
    fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = low_b.borrow();
        let high = high_b.borrow();

        assert!(low <= high);
        Self::new(low, high + 1u32)
    }

    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
        &self.base + BigInt::from(rng.gen_biguint_below(&self.len))
    }

    #[inline]
    fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = low_b.borrow();
        let high = high_b.borrow();

        rng.gen_bigint_range(low, high)
    }
}

impl SampleUniform for BigInt {
    type Sampler = UniformBigInt;
}

/// A random distribution for `BigUint` and `BigInt` values of a particular bit size.
#[derive(Clone, Copy, Debug)]
pub struct RandomBits {
    bits: usize,
}

impl RandomBits {
    #[inline]
    pub fn new(bits: usize) -> RandomBits {
        RandomBits { bits }
    }
}

impl Distribution<BigUint> for RandomBits {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> BigUint {
        rng.gen_biguint(self.bits)
    }
}

impl Distribution<BigInt> for RandomBits {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> BigInt {
        rng.gen_bigint(self.bits)
    }
}

/// A generic trait for generating random primes.
///
/// *Warning*: This is highly dependend on the provided random number generator,
/// to provide actually random primes.
///
/// # Example
#[cfg_attr(feature = "std", doc = " ```")]
#[cfg_attr(not(feature = "std"), doc = " ```ignore")]
/// extern crate rand;
/// extern crate num_bigint_dig as num_bigint;
///
/// use rand::thread_rng;
/// use num_bigint::RandPrime;
///
/// let mut rng = thread_rng();
/// let p = rng.gen_prime(1024);
/// assert_eq!(p.bits(), 1024);
/// ```
///
#[cfg(feature = "prime")]
pub trait RandPrime {
    /// Generate a random prime number with as many bits as given.
    fn gen_prime(&mut self, bits: usize) -> BigUint;
}

/// A list of small, prime numbers that allows us to rapidly
/// exclude some fraction of composite candidates when searching for a random
/// prime. This list is truncated at the point where smallPrimesProduct exceeds
/// a u64. It does not include two because we ensure that the candidates are
/// odd by construction.
#[cfg(feature = "prime")]
const SMALL_PRIMES: [u8; 15] = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53];

#[cfg(feature = "prime")]
lazy_static! {
    /// The product of the values in SMALL_PRIMES and allows us
    /// to reduce a candidate prime by this number and then determine whether it's
    /// coprime to all the elements of SMALL_PRIMES without further BigUint
    /// operations.
    static ref SMALL_PRIMES_PRODUCT: BigUint = BigUint::from_u64(16_294_579_238_595_022_365).unwrap();
}

#[cfg(feature = "prime")]
impl<R: Rng + ?Sized> RandPrime for R {
    fn gen_prime(&mut self, bit_size: usize) -> BigUint {
        if bit_size < 2 {
            panic!("prime size must be at least 2-bit");
        }

        let mut b = bit_size % 8;
        if b == 0 {
            b = 8;
        }

        let bytes_len = (bit_size + 7) / 8;
        let mut bytes = vec![0u8; bytes_len];

        loop {
            self.fill_bytes(&mut bytes);
            // Clear bits in the first byte to make sure the candidate has a size <= bits.
            bytes[0] &= ((1u32 << (b as u32)) - 1) as u8;

            // Don't let the value be too small, i.e, set the most significant two bits.
            // Setting the top two bits, rather than just the top bit,
            // means that when two of these values are multiplied together,
            // the result isn't ever one bit short.
            if b >= 2 {
                bytes[0] |= 3u8.wrapping_shl(b as u32 - 2);
            } else {
                // Here b==1, because b cannot be zero.
                bytes[0] |= 1;
                if bytes_len > 1 {
                    bytes[1] |= 0x80;
                }
            }

            // Make the value odd since an even number this large certainly isn't prime.
            bytes[bytes_len - 1] |= 1u8;

            let mut p = BigUint::from_bytes_be(&bytes);
            // must always be a u64, as the SMALL_PRIMES_PRODUCT is a u64
            let rem = (&p % &*SMALL_PRIMES_PRODUCT).to_u64().unwrap();

            'next: for delta in range_step(0, 1 << 20, 2) {
                let m = rem + delta;

                for prime in &SMALL_PRIMES {
                    if m % u64::from(*prime) == 0 && (bit_size > 6 || m != u64::from(*prime)) {
                        continue 'next;
                    }
                }

                if delta > 0 {
                    p += BigUint::from_u64(delta).unwrap();
                }

                break;
            }

            // There is a tiny possibility that, by adding delta, we caused
            // the number to be one bit too long. Thus we check bit length here.
            if p.bits() == bit_size && probably_prime(&p, 20) {
                return p;
            }
        }
    }
}