1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
// https://github.com/RustCrypto/RSA/blob/master/src/prime.rs
//! Implements probabilistic prime checkers.
use integer::Integer;
use num_traits::{FromPrimitive, One, ToPrimitive, Zero};
use rand::rngs::StdRng;
use rand::SeedableRng;
use crate::algorithms::jacobi;
use crate::big_digit;
use crate::bigrand::RandBigInt;
use crate::Sign::Plus;
use crate::{BigInt, BigUint, IntoBigUint};
lazy_static! {
pub(crate) static ref BIG_1: BigUint = BigUint::one();
pub(crate) static ref BIG_2: BigUint = BigUint::from_u64(2).unwrap();
pub(crate) static ref BIG_3: BigUint = BigUint::from_u64(3).unwrap();
pub(crate) static ref BIG_64: BigUint = BigUint::from_u64(64).unwrap();
}
const PRIMES_A: u64 = 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 37;
const PRIMES_B: u64 = 29 * 31 * 41 * 43 * 47 * 53;
/// Records the primes < 64.
const PRIME_BIT_MASK: u64 = 1 << 2
| 1 << 3
| 1 << 5
| 1 << 7
| 1 << 11
| 1 << 13
| 1 << 17
| 1 << 19
| 1 << 23
| 1 << 29
| 1 << 31
| 1 << 37
| 1 << 41
| 1 << 43
| 1 << 47
| 1 << 53
| 1 << 59
| 1 << 61;
/// ProbablyPrime reports whether x is probably prime,
/// applying the Miller-Rabin test with n pseudorandomly chosen bases
/// as well as a Baillie-PSW test.
///
/// If x is prime, ProbablyPrime returns true.
/// If x is chosen randomly and not prime, ProbablyPrime probably returns false.
/// The probability of returning true for a randomly chosen non-prime is at most ¼ⁿ.
///
/// ProbablyPrime is 100% accurate for inputs less than 2⁶⁴.
/// See Menezes et al., Handbook of Applied Cryptography, 1997, pp. 145-149,
/// and FIPS 186-4 Appendix F for further discussion of the error probabilities.
///
/// ProbablyPrime is not suitable for judging primes that an adversary may
/// have crafted to fool the test.
///
/// This is a port of `ProbablyPrime` from the go std lib.
pub fn probably_prime(x: &BigUint, n: usize) -> bool {
if x.is_zero() {
return false;
}
if x < &*BIG_64 {
return (PRIME_BIT_MASK & (1 << x.to_u64().unwrap())) != 0;
}
if x.is_even() {
return false;
}
let r_a = &(x % PRIMES_A);
let r_b = &(x % PRIMES_B);
if (r_a % 3u32).is_zero()
|| (r_a % 5u32).is_zero()
|| (r_a % 7u32).is_zero()
|| (r_a % 11u32).is_zero()
|| (r_a % 13u32).is_zero()
|| (r_a % 17u32).is_zero()
|| (r_a % 19u32).is_zero()
|| (r_a % 23u32).is_zero()
|| (r_a % 37u32).is_zero()
|| (r_b % 29u32).is_zero()
|| (r_b % 31u32).is_zero()
|| (r_b % 41u32).is_zero()
|| (r_b % 43u32).is_zero()
|| (r_b % 47u32).is_zero()
|| (r_b % 53u32).is_zero()
{
return false;
}
probably_prime_miller_rabin(x, n + 1, true) && probably_prime_lucas(x)
}
const NUMBER_OF_PRIMES: usize = 127;
const PRIME_GAP: [u64; 167] = [
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6,
2, 10, 2, 6, 6, 4, 6, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 10, 6, 6, 6, 2, 6, 4, 2, 10,
14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4, 2, 4, 12,
8, 4, 8, 4, 6, 12, 2, 18, 6, 10, 6, 6, 2, 6, 10, 6, 6, 2, 6, 6, 4, 2, 12, 10, 2, 4, 6, 6, 2,
12, 4, 6, 8, 10, 8, 10, 8, 6, 6, 4, 8, 6, 4, 8, 4, 14, 10, 12, 2, 10, 2, 4, 2, 10, 14, 4, 2, 4,
14, 4, 2, 4, 20, 4, 8, 10, 8, 4, 6, 6, 14, 4, 6, 6, 8, 6, 12,
];
const INCR_LIMIT: usize = 0x10000;
/// Calculate the next larger prime, given a starting number `n`.
pub fn next_prime(n: &BigUint) -> BigUint {
if n < &*BIG_2 {
return 2u32.into_biguint().unwrap();
}
// We want something larger than our current number.
let mut res = n + &*BIG_1;
// Ensure we are odd.
res |= &*BIG_1;
// Handle values up to 7.
if let Some(val) = res.to_u64() {
if val < 7 {
return res;
}
}
let nbits = res.bits();
let prime_limit = if nbits / 2 >= NUMBER_OF_PRIMES {
NUMBER_OF_PRIMES - 1
} else {
nbits / 2
};
// Compute the residues modulo small odd primes
let mut moduli = vec![BigUint::zero(); prime_limit];
'outer: loop {
let mut prime = 3;
for i in 0..prime_limit {
moduli[i] = &res % prime;
prime += PRIME_GAP[i];
}
// Check residues
let mut difference: usize = 0;
for incr in (0..INCR_LIMIT as u64).step_by(2) {
let mut prime: u64 = 3;
let mut cancel = false;
for i in 0..prime_limit {
let r = (&moduli[i] + incr) % prime;
prime += PRIME_GAP[i];
if r.is_zero() {
cancel = true;
break;
}
}
if !cancel {
res += difference;
difference = 0;
if probably_prime(&res, 20) {
break 'outer;
}
}
difference += 2;
}
res += difference;
}
res
}
/// Reports whether n passes reps rounds of the Miller-Rabin primality test, using pseudo-randomly chosen bases.
/// If `force2` is true, one of the rounds is forced to use base 2.
///
/// See Handbook of Applied Cryptography, p. 139, Algorithm 4.24.
pub fn probably_prime_miller_rabin(n: &BigUint, reps: usize, force2: bool) -> bool {
// println!("miller-rabin: {}", n);
let nm1 = n - &*BIG_1;
// determine q, k such that nm1 = q << k
let k = nm1.trailing_zeros().unwrap() as usize;
let q = &nm1 >> k;
let nm3 = n - &*BIG_2;
let mut rng = StdRng::seed_from_u64(n.get_limb(0) as u64);
'nextrandom: for i in 0..reps {
let x = if i == reps - 1 && force2 {
BIG_2.clone()
} else {
rng.gen_biguint_below(&nm3) + &*BIG_2
};
let mut y = x.modpow(&q, n);
if y.is_one() || y == nm1 {
continue;
}
for _ in 1..k {
y = y.modpow(&*BIG_2, n);
if y == nm1 {
continue 'nextrandom;
}
if y.is_one() {
return false;
}
}
return false;
}
true
}
/// Reports whether n passes the "almost extra strong" Lucas probable prime test,
/// using Baillie-OEIS parameter selection. This corresponds to "AESLPSP" on Jacobsen's tables (link below).
/// The combination of this test and a Miller-Rabin/Fermat test with base 2 gives a Baillie-PSW test.
///
///
/// References:
///
/// Baillie and Wagstaff, "Lucas Pseudoprimes", Mathematics of Computation 35(152),
/// October 1980, pp. 1391-1417, especially page 1401.
/// http://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583518-6/S0025-5718-1980-0583518-6.pdf
///
/// Grantham, "Frobenius Pseudoprimes", Mathematics of Computation 70(234),
/// March 2000, pp. 873-891.
/// http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/S0025-5718-00-01197-2.pdf
///
/// Baillie, "Extra strong Lucas pseudoprimes", OEIS A217719, https://oeis.org/A217719.
///
/// Jacobsen, "Pseudoprime Statistics, Tables, and Data", http://ntheory.org/pseudoprimes.html.
///
/// Nicely, "The Baillie-PSW Primality Test", http://www.trnicely.net/misc/bpsw.html.
/// (Note that Nicely's definition of the "extra strong" test gives the wrong Jacobi condition,
/// as pointed out by Jacobsen.)
///
/// Crandall and Pomerance, Prime Numbers: A Computational Perspective, 2nd ed.
/// Springer, 2005.
pub fn probably_prime_lucas(n: &BigUint) -> bool {
// println!("lucas: {}", n);
// Discard 0, 1.
if n.is_zero() || n.is_one() {
return false;
}
// Two is the only even prime.
if n.to_u64() == Some(2) {
return false;
}
// Baillie-OEIS "method C" for choosing D, P, Q,
// as in https://oeis.org/A217719/a217719.txt:
// try increasing P ≥ 3 such that D = P² - 4 (so Q = 1)
// until Jacobi(D, n) = -1.
// The search is expected to succeed for non-square n after just a few trials.
// After more than expected failures, check whether n is square
// (which would cause Jacobi(D, n) = 1 for all D not dividing n).
let mut p = 3u64;
let n_int = BigInt::from_biguint(Plus, n.clone());
loop {
if p > 10000 {
// This is widely believed to be impossible.
// If we get a report, we'll want the exact number n.
panic!("internal error: cannot find (D/n) = -1 for {:?}", n)
}
let d_int = BigInt::from_u64(p * p - 4).unwrap();
let j = jacobi(&d_int, &n_int);
if j == -1 {
break;
}
if j == 0 {
// d = p²-4 = (p-2)(p+2).
// If (d/n) == 0 then d shares a prime factor with n.
// Since the loop proceeds in increasing p and starts with p-2==1,
// the shared prime factor must be p+2.
// If p+2 == n, then n is prime; otherwise p+2 is a proper factor of n.
return n_int.to_i64() == Some(p as i64 + 2);
}
if p == 40 {
// We'll never find (d/n) = -1 if n is a square.
// If n is a non-square we expect to find a d in just a few attempts on average.
// After 40 attempts, take a moment to check if n is indeed a square.
let t1 = n.sqrt();
let t1 = &t1 * &t1;
if &t1 == n {
return false;
}
}
p += 1;
}
// Grantham definition of "extra strong Lucas pseudoprime", after Thm 2.3 on p. 876
// (D, P, Q above have become Δ, b, 1):
//
// Let U_n = U_n(b, 1), V_n = V_n(b, 1), and Δ = b²-4.
// An extra strong Lucas pseudoprime to base b is a composite n = 2^r s + Jacobi(Δ, n),
// where s is odd and gcd(n, 2*Δ) = 1, such that either (i) U_s ≡ 0 mod n and V_s ≡ ±2 mod n,
// or (ii) V_{2^t s} ≡ 0 mod n for some 0 ≤ t < r-1.
//
// We know gcd(n, Δ) = 1 or else we'd have found Jacobi(d, n) == 0 above.
// We know gcd(n, 2) = 1 because n is odd.
//
// Arrange s = (n - Jacobi(Δ, n)) / 2^r = (n+1) / 2^r.
let mut s = n + &*BIG_1;
let r = s.trailing_zeros().unwrap() as usize;
s = &s >> r;
let nm2 = n - &*BIG_2; // n - 2
// We apply the "almost extra strong" test, which checks the above conditions
// except for U_s ≡ 0 mod n, which allows us to avoid computing any U_k values.
// Jacobsen points out that maybe we should just do the full extra strong test:
// "It is also possible to recover U_n using Crandall and Pomerance equation 3.13:
// U_n = D^-1 (2V_{n+1} - PV_n) allowing us to run the full extra-strong test
// at the cost of a single modular inversion. This computation is easy and fast in GMP,
// so we can get the full extra-strong test at essentially the same performance as the
// almost extra strong test."
// Compute Lucas sequence V_s(b, 1), where:
//
// V(0) = 2
// V(1) = P
// V(k) = P V(k-1) - Q V(k-2).
//
// (Remember that due to method C above, P = b, Q = 1.)
//
// In general V(k) = α^k + β^k, where α and β are roots of x² - Px + Q.
// Crandall and Pomerance (p.147) observe that for 0 ≤ j ≤ k,
//
// V(j+k) = V(j)V(k) - V(k-j).
//
// So in particular, to quickly double the subscript:
//
// V(2k) = V(k)² - 2
// V(2k+1) = V(k) V(k+1) - P
//
// We can therefore start with k=0 and build up to k=s in log₂(s) steps.
let mut vk = BIG_2.clone();
let mut vk1 = BigUint::from_u64(p).unwrap();
for i in (0..s.bits()).rev() {
if is_bit_set(&s, i) {
// k' = 2k+1
// V(k') = V(2k+1) = V(k) V(k+1) - P
let t1 = (&vk * &vk1) + n - p;
vk = &t1 % n;
// V(k'+1) = V(2k+2) = V(k+1)² - 2
let t1 = (&vk1 * &vk1) + &nm2;
vk1 = &t1 % n;
} else {
// k' = 2k
// V(k'+1) = V(2k+1) = V(k) V(k+1) - P
let t1 = (&vk * &vk1) + n - p;
vk1 = &t1 % n;
// V(k') = V(2k) = V(k)² - 2
let t1 = (&vk * &vk) + &nm2;
vk = &t1 % n;
}
}
// Now k=s, so vk = V(s). Check V(s) ≡ ±2 (mod n).
if vk.to_u64() == Some(2) || vk == nm2 {
// Check U(s) ≡ 0.
// As suggested by Jacobsen, apply Crandall and Pomerance equation 3.13:
//
// U(k) = D⁻¹ (2 V(k+1) - P V(k))
//
// Since we are checking for U(k) == 0 it suffices to check 2 V(k+1) == P V(k) mod n,
// or P V(k) - 2 V(k+1) == 0 mod n.
let mut t1 = &vk * p;
let mut t2 = &vk1 << 1;
if t1 < t2 {
core::mem::swap(&mut t1, &mut t2);
}
t1 -= t2;
if (t1 % n).is_zero() {
return true;
}
}
// Check V(2^t s) ≡ 0 mod n for some 0 ≤ t < r-1.
for _ in 0..r - 1 {
if vk.is_zero() {
return true;
}
// Optimization: V(k) = 2 is a fixed point for V(k') = V(k)² - 2,
// so if V(k) = 2, we can stop: we will never find a future V(k) == 0.
if vk.to_u64() == Some(2) {
return false;
}
// k' = 2k
// V(k') = V(2k) = V(k)² - 2
let t1 = (&vk * &vk) - &*BIG_2;
vk = &t1 % n;
}
false
}
/// Checks if the i-th bit is set
#[inline]
fn is_bit_set(x: &BigUint, i: usize) -> bool {
get_bit(x, i) == 1
}
/// Returns the i-th bit.
#[inline]
fn get_bit(x: &BigUint, i: usize) -> u8 {
let j = i / big_digit::BITS;
// if is out of range of the set words, it is always false.
if i >= x.bits() {
return 0;
}
(x.get_limb(j) >> (i % big_digit::BITS) & 1) as u8
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::vec::Vec;
// use RandBigInt;
use crate::biguint::ToBigUint;
lazy_static! {
static ref PRIMES: Vec<&'static str> = vec![
"2",
"3",
"5",
"7",
"11",
"13756265695458089029",
"13496181268022124907",
"10953742525620032441",
"17908251027575790097",
// https://golang.org/issue/638
"18699199384836356663",
"98920366548084643601728869055592650835572950932266967461790948584315647051443",
"94560208308847015747498523884063394671606671904944666360068158221458669711639",
// http://primes.utm.edu/lists/small/small3.html
"449417999055441493994709297093108513015373787049558499205492347871729927573118262811508386655998299074566974373711472560655026288668094291699357843464363003144674940345912431129144354948751003607115263071543163",
"230975859993204150666423538988557839555560243929065415434980904258310530753006723857139742334640122533598517597674807096648905501653461687601339782814316124971547968912893214002992086353183070342498989426570593",
"5521712099665906221540423207019333379125265462121169655563495403888449493493629943498064604536961775110765377745550377067893607246020694972959780839151452457728855382113555867743022746090187341871655890805971735385789993",
"203956878356401977405765866929034577280193993314348263094772646453283062722701277632936616063144088173312372882677123879538709400158306567338328279154499698366071906766440037074217117805690872792848149112022286332144876183376326512083574821647933992961249917319836219304274280243803104015000563790123",
// ECC primes: http://tools.ietf.org/html/draft-ladd-safecurves-02
"3618502788666131106986593281521497120414687020801267626233049500247285301239", // Curve1174: 2^251-9
"57896044618658097711785492504343953926634992332820282019728792003956564819949", // Curve25519: 2^255-19
"9850501549098619803069760025035903451269934817616361666987073351061430442874302652853566563721228910201656997576599", // E-382: 2^382-105
"42307582002575910332922579714097346549017899709713998034217522897561970639123926132812109468141778230245837569601494931472367", // Curve41417: 2^414-17
"6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", // E-521: 2^521-1
];
static ref COMPOSITES: Vec<&'static str> = vec![
"0",
"1",
"21284175091214687912771199898307297748211672914763848041968395774954376176754",
"6084766654921918907427900243509372380954290099172559290432744450051395395951",
"84594350493221918389213352992032324280367711247940675652888030554255915464401",
"82793403787388584738507275144194252681",
// Arnault, "Rabin-Miller Primality Test: Composite Numbers Which Pass It",
// Mathematics of Computation, 64(209) (January 1995), pp. 335-361.
"1195068768795265792518361315725116351898245581", // strong pseudoprime to prime bases 2 through 29
// strong pseudoprime to all prime bases up to 200
"8038374574536394912570796143419421081388376882875581458374889175222974273765333652186502336163960045457915042023603208766569966760987284043965408232928738791850869166857328267761771029389697739470167082304286871099974399765441448453411558724506334092790222752962294149842306881685404326457534018329786111298960644845216191652872597534901",
// Extra-strong Lucas pseudoprimes. https://oeis.org/A217719
"989",
"3239",
"5777",
"10877",
"27971",
"29681",
"30739",
"31631",
"39059",
"72389",
"73919",
"75077",
"100127",
"113573",
"125249",
"137549",
"137801",
"153931",
"155819",
"161027",
"162133",
"189419",
"218321",
"231703",
"249331",
"370229",
"429479",
"430127",
"459191",
"473891",
"480689",
"600059",
"621781",
"632249",
"635627",
"3673744903",
"3281593591",
"2385076987",
"2738053141",
"2009621503",
"1502682721",
"255866131",
"117987841",
"587861",
"6368689",
"8725753",
"80579735209",
"105919633",
];
// Test Cases from #51
static ref ISSUE_51: Vec<&'static str> = vec![
"1579751",
"1884791",
"3818929",
"4080359",
"4145951",
];
}
#[test]
fn test_primes() {
for prime in PRIMES.iter() {
let p = BigUint::parse_bytes(prime.as_bytes(), 10).unwrap();
for i in [0, 1, 20].iter() {
assert!(
probably_prime(&p, *i as usize),
"{} is a prime ({})",
prime,
i,
);
}
}
}
#[test]
fn test_composites() {
for comp in COMPOSITES.iter() {
let p = BigUint::parse_bytes(comp.as_bytes(), 10).unwrap();
for i in [0, 1, 20].iter() {
assert!(
!probably_prime(&p, *i as usize),
"{} is a composite ({})",
comp,
i,
);
}
}
}
#[test]
fn test_issue_51() {
for num in ISSUE_51.iter() {
let p = BigUint::parse_bytes(num.as_bytes(), 10).unwrap();
assert!(probably_prime(&p, 20), "{} is a prime number", num);
}
}
macro_rules! test_pseudo_primes {
($name:ident, $cond:expr, $want:expr) => {
#[test]
fn $name() {
let mut i = 3;
let mut want = $want;
while i < 100000 {
let n = BigUint::from_u64(i).unwrap();
let pseudo = $cond(&n);
if pseudo && (want.is_empty() || i != want[0]) {
panic!("cond({}) = true, want false", i);
} else if !pseudo && !want.is_empty() && i == want[0] {
panic!("cond({}) = false, want true", i);
}
if !want.is_empty() && i == want[0] {
want = want[1..].to_vec();
}
i += 2;
}
if !want.is_empty() {
panic!("forgot to test: {:?}", want);
}
}
};
}
test_pseudo_primes!(
test_probably_prime_miller_rabin,
|n| probably_prime_miller_rabin(n, 1, true) && !probably_prime_lucas(n),
vec![
2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581,
85489, 88357, 90751,
]
);
test_pseudo_primes!(
test_probably_prime_lucas,
|n| probably_prime_lucas(n) && !probably_prime_miller_rabin(n, 1, true),
vec![989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059, 72389, 73919, 75077,]
);
#[test]
fn test_bit_set() {
let v = &vec![0b10101001];
let num = BigUint::from_slice(&v);
assert!(is_bit_set(&num, 0));
assert!(!is_bit_set(&num, 1));
assert!(!is_bit_set(&num, 2));
assert!(is_bit_set(&num, 3));
assert!(!is_bit_set(&num, 4));
assert!(is_bit_set(&num, 5));
assert!(!is_bit_set(&num, 6));
assert!(is_bit_set(&num, 7));
}
#[test]
fn test_next_prime_basics() {
let primes1 = (0..2048u32)
.map(|i| next_prime(&i.to_biguint().unwrap()))
.collect::<Vec<_>>();
let primes2 = (0..2048u32)
.map(|i| {
let i = i.to_biguint().unwrap();
let p = next_prime(&i);
assert!(&p > &i);
p
})
.collect::<Vec<_>>();
for (p1, p2) in primes1.iter().zip(&primes2) {
assert_eq!(p1, p2);
assert!(probably_prime(p1, 25));
}
}
#[test]
fn test_next_prime_bug_44() {
let i = 1032989.to_biguint().unwrap();
let next = next_prime(&i);
assert_eq!(1033001.to_biguint().unwrap(), next);
}
}