1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
// Copyright 2018 Stichting Organism
//
// Copyright 2018 Friedel Ziegelmayer
//
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A Big integer (signed version: `BigInt`, unsigned version: `BigUint`).
//!
//! A `BigUint` is represented as a vector of `BigDigit`s.
//! A `BigInt` is a combination of `BigUint` and `Sign`.
//!
//! Common numerical operations are overloaded, so we can treat them
//! the same way we treat other numbers.
//!
//! ## Example
//!
//! ```rust
//! extern crate num_bigint_dig as num_bigint;
//! extern crate num_traits;
//!
//! # fn main() {
//! use num_bigint::BigUint;
//! use num_traits::{Zero, One};
//! use std::mem::replace;
//!
//! // Calculate large fibonacci numbers.
//! fn fib(n: usize) -> BigUint {
//! let mut f0: BigUint = Zero::zero();
//! let mut f1: BigUint = One::one();
//! for _ in 0..n {
//! let f2 = f0 + &f1;
//! // This is a low cost way of swapping f0 with f1 and f1 with f2.
//! f0 = replace(&mut f1, f2);
//! }
//! f0
//! }
//!
//! // This is a very large number.
//! //println!("fib(1000) = {}", fib(1000));
//! # }
//! ```
//!
//! It's easy to generate large random numbers:
//!
#![cfg_attr(feature = "std", doc = " ```")]
#![cfg_attr(not(feature = "std"), doc = " ```ignore")]
//!
//! # #[cfg(feature = "rand")]
//! extern crate rand;
//! extern crate num_bigint_dig as bigint;
//!
//! # #[cfg(feature = "rand")]
//! # fn main() {
//! use bigint::{ToBigInt, RandBigInt};
//!
//! let mut rng = rand::thread_rng();
//! let a = rng.gen_bigint(1000);
//!
//! let low = -10000.to_bigint().unwrap();
//! let high = 10000.to_bigint().unwrap();
//! let b = rng.gen_bigint_range(&low, &high);
//!
//! // Probably an even larger number.
//! //println!("{}", a * b);
//! # }
//!
//! # #[cfg(not(feature = "rand"))]
//! # fn main() {
//! # }
//! ```
//!
//! ## Compatibility
//!
//! The `num-bigint-dig` crate is tested for rustc 1.56 and greater.
//!
//! ## `no_std` compatibility
//!
//! This crate is compatible with `no_std` environments.
//!
//! Note however that it still requires the `alloc` crate, so the user should
//! ensure that they set a `global_allocator`.
//!
//! To use in no_std environment, add the crate as such in your `Cargo.toml`
//! file:
//!
//! ```toml
//! [dependencies]
//! num-bigint-dig = { version = "0.8", default-features=false }
//! ```
//!
//! Every features should be compatible with no_std environment, so feel free to
//! add features like `prime`, `i128`, etc...
#![doc(html_root_url = "https://docs.rs/num-bigint/0.2")]
#![no_std]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
#[macro_use]
extern crate smallvec;
#[cfg(feature = "prime")]
#[macro_use]
extern crate lazy_static;
extern crate num_integer as integer;
use core::fmt;
#[cfg(feature = "std")]
use std::error::Error;
#[macro_use]
mod macros;
mod bigint;
mod biguint;
#[cfg(feature = "prime")]
pub mod prime;
pub mod algorithms;
pub mod traits;
pub use crate::traits::*;
#[cfg(feature = "rand")]
mod bigrand;
#[cfg(target_pointer_width = "32")]
type UsizePromotion = u32;
#[cfg(target_pointer_width = "64")]
type UsizePromotion = u64;
#[cfg(target_pointer_width = "32")]
type IsizePromotion = i32;
#[cfg(target_pointer_width = "64")]
type IsizePromotion = i64;
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParseBigIntError {
kind: BigIntErrorKind,
}
#[derive(Debug, Clone, PartialEq, Eq)]
enum BigIntErrorKind {
Empty,
InvalidDigit,
}
impl ParseBigIntError {
fn __description(&self) -> &str {
use crate::BigIntErrorKind::*;
match self.kind {
Empty => "cannot parse integer from empty string",
InvalidDigit => "invalid digit found in string",
}
}
fn empty() -> Self {
ParseBigIntError {
kind: BigIntErrorKind::Empty,
}
}
fn invalid() -> Self {
ParseBigIntError {
kind: BigIntErrorKind::InvalidDigit,
}
}
}
impl fmt::Display for ParseBigIntError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.__description().fmt(f)
}
}
#[cfg(feature = "std")]
impl Error for ParseBigIntError {
fn description(&self) -> &str {
self.__description()
}
}
pub use crate::biguint::BigUint;
pub use crate::biguint::IntoBigUint;
pub use crate::biguint::ToBigUint;
pub use crate::bigint::negate_sign;
pub use crate::bigint::BigInt;
pub use crate::bigint::IntoBigInt;
pub use crate::bigint::Sign;
pub use crate::bigint::ToBigInt;
#[cfg(feature = "rand")]
pub use crate::bigrand::{RandBigInt, RandomBits, UniformBigInt, UniformBigUint};
#[cfg(feature = "prime")]
pub use bigrand::RandPrime;
#[cfg(not(feature = "u64_digit"))]
pub const VEC_SIZE: usize = 8;
#[cfg(feature = "u64_digit")]
pub const VEC_SIZE: usize = 4;
mod big_digit {
/// A `BigDigit` is a `BigUint`'s composing element.
#[cfg(not(feature = "u64_digit"))]
pub type BigDigit = u32;
#[cfg(feature = "u64_digit")]
pub type BigDigit = u64;
/// A `DoubleBigDigit` is the internal type used to do the computations. Its
/// size is the double of the size of `BigDigit`.
#[cfg(not(feature = "u64_digit"))]
pub type DoubleBigDigit = u64;
#[cfg(feature = "u64_digit")]
pub type DoubleBigDigit = u128;
/// A `SignedDoubleBigDigit` is the signed version of `DoubleBigDigit`.
#[cfg(not(feature = "u64_digit"))]
pub type SignedDoubleBigDigit = i64;
#[cfg(feature = "u64_digit")]
pub type SignedDoubleBigDigit = i128;
// `DoubleBigDigit` size dependent
#[cfg(not(feature = "u64_digit"))]
pub const BITS: usize = 32;
#[cfg(feature = "u64_digit")]
pub const BITS: usize = 64;
#[cfg(not(feature = "u64_digit"))]
const LO_MASK: DoubleBigDigit = (-1i32 as DoubleBigDigit) >> BITS;
#[cfg(feature = "u64_digit")]
const LO_MASK: DoubleBigDigit = (-1i64 as DoubleBigDigit) >> BITS;
#[inline]
fn get_hi(n: DoubleBigDigit) -> BigDigit {
(n >> BITS) as BigDigit
}
#[inline]
fn get_lo(n: DoubleBigDigit) -> BigDigit {
(n & LO_MASK) as BigDigit
}
/// Split one `DoubleBigDigit` into two `BigDigit`s.
#[inline]
pub fn from_doublebigdigit(n: DoubleBigDigit) -> (BigDigit, BigDigit) {
(get_hi(n), get_lo(n))
}
/// Join two `BigDigit`s into one `DoubleBigDigit`
#[inline]
pub fn to_doublebigdigit(hi: BigDigit, lo: BigDigit) -> DoubleBigDigit {
(DoubleBigDigit::from(lo)) | ((DoubleBigDigit::from(hi)) << BITS)
}
}