1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
//! Randomization of big integers
use rand::distributions::uniform::{SampleBorrow, SampleUniform, UniformSampler};
use rand::prelude::*;
use rand::Rng;
use crate::BigInt;
use crate::BigUint;
use crate::Sign::*;
use crate::big_digit::BigDigit;
use crate::bigint::{into_magnitude, magnitude};
use crate::integer::Integer;
#[cfg(feature = "prime")]
use num_iter::range_step;
use num_traits::Zero;
#[cfg(feature = "prime")]
use num_traits::{FromPrimitive, ToPrimitive};
#[cfg(feature = "prime")]
use crate::prime::probably_prime;
pub trait RandBigInt {
/// Generate a random `BigUint` of the given bit size.
fn gen_biguint(&mut self, bit_size: usize) -> BigUint;
/// Generate a random BigInt of the given bit size.
fn gen_bigint(&mut self, bit_size: usize) -> BigInt;
/// Generate a random `BigUint` less than the given bound. Fails
/// when the bound is zero.
fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint;
/// Generate a random `BigUint` within the given range. The lower
/// bound is inclusive; the upper bound is exclusive. Fails when
/// the upper bound is not greater than the lower bound.
fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint;
/// Generate a random `BigInt` within the given range. The lower
/// bound is inclusive; the upper bound is exclusive. Fails when
/// the upper bound is not greater than the lower bound.
fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt;
}
impl<R: Rng + ?Sized> RandBigInt for R {
fn gen_biguint(&mut self, bit_size: usize) -> BigUint {
use super::big_digit::BITS;
let (digits, rem) = bit_size.div_rem(&BITS);
let mut data = smallvec![BigDigit::default(); digits + (rem > 0) as usize];
// `fill` is faster than many `gen::<u32>` calls
// Internally this calls `SeedableRng` where implementors are responsible for adjusting endianness for reproducable values.
self.fill(data.as_mut_slice());
if rem > 0 {
data[digits] >>= BITS - rem;
}
BigUint::new_native(data)
}
fn gen_bigint(&mut self, bit_size: usize) -> BigInt {
loop {
// Generate a random BigUint...
let biguint = self.gen_biguint(bit_size);
// ...and then randomly assign it a Sign...
let sign = if biguint.is_zero() {
// ...except that if the BigUint is zero, we need to try
// again with probability 0.5. This is because otherwise,
// the probability of generating a zero BigInt would be
// double that of any other number.
if self.gen() {
continue;
} else {
NoSign
}
} else if self.gen() {
Plus
} else {
Minus
};
return BigInt::from_biguint(sign, biguint);
}
}
fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint {
assert!(!bound.is_zero());
let bits = bound.bits();
loop {
let n = self.gen_biguint(bits);
if n < *bound {
return n;
}
}
}
fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint {
assert!(*lbound < *ubound);
if lbound.is_zero() {
self.gen_biguint_below(ubound)
} else {
lbound + self.gen_biguint_below(&(ubound - lbound))
}
}
fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt {
assert!(*lbound < *ubound);
if lbound.is_zero() {
BigInt::from(self.gen_biguint_below(magnitude(&ubound)))
} else if ubound.is_zero() {
lbound + BigInt::from(self.gen_biguint_below(magnitude(&lbound)))
} else {
let delta = ubound - lbound;
lbound + BigInt::from(self.gen_biguint_below(magnitude(&delta)))
}
}
}
/// The back-end implementing rand's `UniformSampler` for `BigUint`.
#[derive(Clone, Debug)]
pub struct UniformBigUint {
base: BigUint,
len: BigUint,
}
impl UniformSampler for UniformBigUint {
type X = BigUint;
#[inline]
fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = low_b.borrow();
let high = high_b.borrow();
assert!(low < high);
UniformBigUint {
len: high - low,
base: low.clone(),
}
}
#[inline]
fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
Self::new(low_b, high_b.borrow() + 1u32)
}
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
&self.base + rng.gen_biguint_below(&self.len)
}
#[inline]
fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = low_b.borrow();
let high = high_b.borrow();
rng.gen_biguint_range(low, high)
}
}
impl SampleUniform for BigUint {
type Sampler = UniformBigUint;
}
/// The back-end implementing rand's `UniformSampler` for `BigInt`.
#[derive(Clone, Debug)]
pub struct UniformBigInt {
base: BigInt,
len: BigUint,
}
impl UniformSampler for UniformBigInt {
type X = BigInt;
#[inline]
fn new<B1, B2>(low_b: B1, high_b: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = low_b.borrow();
let high = high_b.borrow();
assert!(low < high);
UniformBigInt {
len: into_magnitude(high - low),
base: low.clone(),
}
}
#[inline]
fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Self
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = low_b.borrow();
let high = high_b.borrow();
assert!(low <= high);
Self::new(low, high + 1u32)
}
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
&self.base + BigInt::from(rng.gen_biguint_below(&self.len))
}
#[inline]
fn sample_single<R: Rng + ?Sized, B1, B2>(low_b: B1, high_b: B2, rng: &mut R) -> Self::X
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let low = low_b.borrow();
let high = high_b.borrow();
rng.gen_bigint_range(low, high)
}
}
impl SampleUniform for BigInt {
type Sampler = UniformBigInt;
}
/// A random distribution for `BigUint` and `BigInt` values of a particular bit size.
#[derive(Clone, Copy, Debug)]
pub struct RandomBits {
bits: usize,
}
impl RandomBits {
#[inline]
pub fn new(bits: usize) -> RandomBits {
RandomBits { bits }
}
}
impl Distribution<BigUint> for RandomBits {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> BigUint {
rng.gen_biguint(self.bits)
}
}
impl Distribution<BigInt> for RandomBits {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> BigInt {
rng.gen_bigint(self.bits)
}
}
/// A generic trait for generating random primes.
///
/// *Warning*: This is highly dependend on the provided random number generator,
/// to provide actually random primes.
///
/// # Example
#[cfg_attr(feature = "std", doc = " ```")]
#[cfg_attr(not(feature = "std"), doc = " ```ignore")]
/// extern crate rand;
/// extern crate num_bigint_dig as num_bigint;
///
/// use rand::thread_rng;
/// use num_bigint::RandPrime;
///
/// let mut rng = thread_rng();
/// let p = rng.gen_prime(1024);
/// assert_eq!(p.bits(), 1024);
/// ```
///
#[cfg(feature = "prime")]
pub trait RandPrime {
/// Generate a random prime number with as many bits as given.
fn gen_prime(&mut self, bits: usize) -> BigUint;
}
/// A list of small, prime numbers that allows us to rapidly
/// exclude some fraction of composite candidates when searching for a random
/// prime. This list is truncated at the point where smallPrimesProduct exceeds
/// a u64. It does not include two because we ensure that the candidates are
/// odd by construction.
#[cfg(feature = "prime")]
const SMALL_PRIMES: [u8; 15] = [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53];
#[cfg(feature = "prime")]
lazy_static! {
/// The product of the values in SMALL_PRIMES and allows us
/// to reduce a candidate prime by this number and then determine whether it's
/// coprime to all the elements of SMALL_PRIMES without further BigUint
/// operations.
static ref SMALL_PRIMES_PRODUCT: BigUint = BigUint::from_u64(16_294_579_238_595_022_365).unwrap();
}
#[cfg(feature = "prime")]
impl<R: Rng + ?Sized> RandPrime for R {
fn gen_prime(&mut self, bit_size: usize) -> BigUint {
if bit_size < 2 {
panic!("prime size must be at least 2-bit");
}
let mut b = bit_size % 8;
if b == 0 {
b = 8;
}
let bytes_len = (bit_size + 7) / 8;
let mut bytes = vec![0u8; bytes_len];
loop {
self.fill_bytes(&mut bytes);
// Clear bits in the first byte to make sure the candidate has a size <= bits.
bytes[0] &= ((1u32 << (b as u32)) - 1) as u8;
// Don't let the value be too small, i.e, set the most significant two bits.
// Setting the top two bits, rather than just the top bit,
// means that when two of these values are multiplied together,
// the result isn't ever one bit short.
if b >= 2 {
bytes[0] |= 3u8.wrapping_shl(b as u32 - 2);
} else {
// Here b==1, because b cannot be zero.
bytes[0] |= 1;
if bytes_len > 1 {
bytes[1] |= 0x80;
}
}
// Make the value odd since an even number this large certainly isn't prime.
bytes[bytes_len - 1] |= 1u8;
let mut p = BigUint::from_bytes_be(&bytes);
// must always be a u64, as the SMALL_PRIMES_PRODUCT is a u64
let rem = (&p % &*SMALL_PRIMES_PRODUCT).to_u64().unwrap();
'next: for delta in range_step(0, 1 << 20, 2) {
let m = rem + delta;
for prime in &SMALL_PRIMES {
if m % u64::from(*prime) == 0 && (bit_size > 6 || m != u64::from(*prime)) {
continue 'next;
}
}
if delta > 0 {
p += BigUint::from_u64(delta).unwrap();
}
break;
}
// There is a tiny possibility that, by adding delta, we caused
// the number to be one bit too long. Thus we check bit length here.
if p.bits() == bit_size && probably_prime(&p, 20) {
return p;
}
}
}
}