num_bigint_dig/algorithms/div.rs
1use core::cmp::Ordering;
2use num_traits::{One, Zero};
3use smallvec::SmallVec;
4
5use crate::algorithms::{add2, cmp_slice, sub2};
6use crate::big_digit::{self, BigDigit, DoubleBigDigit};
7use crate::BigUint;
8
9pub fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) {
10 let mut rem = 0;
11
12 for d in a.data.iter_mut().rev() {
13 let (q, r) = div_wide(rem, *d, b);
14 *d = q;
15 rem = r;
16 }
17
18 (a.normalized(), rem)
19}
20
21/// Divide a two digit numerator by a one digit divisor, returns quotient and remainder:
22///
23/// Note: the caller must ensure that both the quotient and remainder will fit into a single digit.
24/// This is _not_ true for an arbitrary numerator/denominator.
25///
26/// (This function also matches what the x86 divide instruction does).
27#[inline]
28pub fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) {
29 debug_assert!(hi < divisor);
30
31 let lhs = big_digit::to_doublebigdigit(hi, lo);
32 let rhs = divisor as DoubleBigDigit;
33 ((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit)
34}
35
36pub fn div_rem(u: &BigUint, d: &BigUint) -> (BigUint, BigUint) {
37 if d.is_zero() {
38 panic!()
39 }
40 if u.is_zero() {
41 return (Zero::zero(), Zero::zero());
42 }
43 if d.data.len() == 1 {
44 if d.data[0] == 1 {
45 return (u.clone(), Zero::zero());
46 }
47
48 let (div, rem) = div_rem_digit(u.clone(), d.data[0]);
49 return (div, rem.into());
50 }
51
52 // Required or the q_len calculation below can underflow:
53 match u.cmp(d) {
54 Ordering::Less => return (Zero::zero(), u.clone()),
55 Ordering::Equal => return (One::one(), Zero::zero()),
56 Ordering::Greater => {} // Do nothing
57 }
58
59 // This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
60 //
61 // First, normalize the arguments so the highest bit in the highest digit of the divisor is
62 // set: the main loop uses the highest digit of the divisor for generating guesses, so we
63 // want it to be the largest number we can efficiently divide by.
64 //
65 let shift = d.data.last().unwrap().leading_zeros() as usize;
66 let mut a = u << shift;
67 let b = d << shift;
68
69 // The algorithm works by incrementally calculating "guesses", q0, for part of the
70 // remainder. Once we have any number q0 such that q0 * b <= a, we can set
71 //
72 // q += q0
73 // a -= q0 * b
74 //
75 // and then iterate until a < b. Then, (q, a) will be our desired quotient and remainder.
76 //
77 // q0, our guess, is calculated by dividing the last few digits of a by the last digit of b
78 // - this should give us a guess that is "close" to the actual quotient, but is possibly
79 // greater than the actual quotient. If q0 * b > a, we simply use iterated subtraction
80 // until we have a guess such that q0 * b <= a.
81 //
82
83 let bn = *b.data.last().unwrap();
84 let q_len = a.data.len() - b.data.len() + 1;
85 let mut q = BigUint {
86 data: smallvec![0; q_len],
87 };
88
89 // We reuse the same temporary to avoid hitting the allocator in our inner loop - this is
90 // sized to hold a0 (in the common case; if a particular digit of the quotient is zero a0
91 // can be bigger).
92 //
93 let mut tmp = BigUint {
94 data: SmallVec::with_capacity(2),
95 };
96
97 for j in (0..q_len).rev() {
98 /*
99 * When calculating our next guess q0, we don't need to consider the digits below j
100 * + b.data.len() - 1: we're guessing digit j of the quotient (i.e. q0 << j) from
101 * digit bn of the divisor (i.e. bn << (b.data.len() - 1) - so the product of those
102 * two numbers will be zero in all digits up to (j + b.data.len() - 1).
103 */
104 let offset = j + b.data.len() - 1;
105 if offset >= a.data.len() {
106 continue;
107 }
108
109 /* just avoiding a heap allocation: */
110 let mut a0 = tmp;
111 a0.data.truncate(0);
112 a0.data.extend(a.data[offset..].iter().cloned());
113
114 /*
115 * q0 << j * big_digit::BITS is our actual quotient estimate - we do the shifts
116 * implicitly at the end, when adding and subtracting to a and q. Not only do we
117 * save the cost of the shifts, the rest of the arithmetic gets to work with
118 * smaller numbers.
119 */
120 let (mut q0, _) = div_rem_digit(a0, bn);
121 let mut prod = &b * &q0;
122
123 while cmp_slice(&prod.data[..], &a.data[j..]) == Ordering::Greater {
124 let one: BigUint = One::one();
125 q0 = q0 - one;
126 prod = prod - &b;
127 }
128
129 add2(&mut q.data[j..], &q0.data[..]);
130 sub2(&mut a.data[j..], &prod.data[..]);
131 a.normalize();
132
133 tmp = q0;
134 }
135
136 debug_assert!(a < b);
137
138 (q.normalized(), a >> shift)
139}