num_cmp/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
//! The **[`NumCmp`](./trait.NumCmp.html)** trait for comparison between differently typed numbers.
//!
//! ```rust
//! use std::f32;
//! use std::cmp::Ordering;
//! use num_cmp::NumCmp;
//!
//! assert!(NumCmp::num_eq(3u64, 3.0f32));
//! assert!(NumCmp::num_lt(-4.7f64, -4i8));
//! assert!(!NumCmp::num_ge(-3i8, 1u16));
//!
//! // 40_000_000 can be exactly represented in f32, 40_000_001 cannot
//! assert_eq!(NumCmp::num_cmp(40_000_000.0f32, 40_000_000u32), Some(Ordering::Equal));
//! assert_ne!(NumCmp::num_cmp(40_000_001.0f32, 40_000_001u32), Some(Ordering::Equal));
//! assert_eq!(NumCmp::num_cmp(f32::NAN, 40_000_002u32), None);
//! ```
//!
//! The `i128` Cargo feature can be enabled in nightly
//! to get support for `i128` and `u128` types as well,
//! which is being implemented in [Rust issue #35118][issue-35118].
//!
//! [issue-35118]: https://github.com/rust-lang/rust/issues/35118
#![cfg_attr(feature = "i128", feature(i128_type))]
#![deny(missing_docs)]
use std::cmp::Ordering;
/// A trait for comparison between differently typed numbers.
///
/// This trait is implemented for every pair of integer and floating-point types available,
/// including `isize`, `usize` and also (when the `i128` feature is enabled) `i128` and `u128`.
pub trait NumCmp<Other: Copy>: Copy {
// only used for testing
#[cfg(test)] fn num_cmp_strategy(self, other: Other) -> &'static str;
/// Same to `self.partial_cmp(&other)`
/// but can be used for different numeric types for `self` and `other`.
fn num_cmp(self, other: Other) -> Option<Ordering>;
/// Same to `self == other` but can be used for different numeric types for `self` and `other`.
fn num_eq(self, other: Other) -> bool;
/// Same to `self != other` but can be used for different numeric types for `self` and `other`.
fn num_ne(self, other: Other) -> bool;
/// Same to `self < other` but can be used for different numeric types for `self` and `other`.
fn num_lt(self, other: Other) -> bool;
/// Same to `self > other` but can be used for different numeric types for `self` and `other`.
fn num_gt(self, other: Other) -> bool;
/// Same to `self <= other` but can be used for different numeric types for `self` and `other`.
fn num_le(self, other: Other) -> bool;
/// Same to `self >= other` but can be used for different numeric types for `self` and `other`.
fn num_ge(self, other: Other) -> bool;
}
// strategy 1: for the same type T, delegate to normal operators.
macro_rules! impl_for_equal_types {
($($ty:ty;)*) => ($(
impl NumCmp<$ty> for $ty {
#[cfg(test)]
fn num_cmp_strategy(self, _other: $ty) -> &'static str {
"strategy 1"
}
#[inline]
fn num_cmp(self, other: $ty) -> Option<Ordering> {
self.partial_cmp(&other)
}
#[inline]
fn num_eq(self, other: $ty) -> bool {
self == other
}
#[inline]
fn num_ne(self, other: $ty) -> bool {
self != other
}
#[inline]
fn num_lt(self, other: $ty) -> bool {
self < other
}
#[inline]
fn num_gt(self, other: $ty) -> bool {
self > other
}
#[inline]
fn num_le(self, other: $ty) -> bool {
self <= other
}
#[inline]
fn num_ge(self, other: $ty) -> bool {
self >= other
}
}
)*);
}
// strategy 2: for two types where one of them is isize or usize,
// delegate to implementations for the equivalently sized types.
macro_rules! impl_for_size_types {
($($size:ty => $nonsize:ty, $other:ty;)*) => ($(
impl NumCmp<$other> for $size {
#[cfg(test)]
fn num_cmp_strategy(self, _other: $other) -> &'static str {
"strategy 2, size vs other"
}
#[inline]
fn num_cmp(self, other: $other) -> Option<Ordering> {
(self as $nonsize).num_cmp(other)
}
#[inline]
fn num_eq(self, other: $other) -> bool {
(self as $nonsize).num_eq(other)
}
#[inline]
fn num_ne(self, other: $other) -> bool {
(self as $nonsize).num_ne(other)
}
#[inline]
fn num_lt(self, other: $other) -> bool {
(self as $nonsize).num_lt(other)
}
#[inline]
fn num_gt(self, other: $other) -> bool {
(self as $nonsize).num_gt(other)
}
#[inline]
fn num_le(self, other: $other) -> bool {
(self as $nonsize).num_le(other)
}
#[inline]
fn num_ge(self, other: $other) -> bool {
(self as $nonsize).num_ge(other)
}
}
impl NumCmp<$size> for $other {
#[cfg(test)]
fn num_cmp_strategy(self, _other: $size) -> &'static str {
"strategy 2, nonsize vs size"
}
#[inline]
fn num_cmp(self, other: $size) -> Option<Ordering> {
self.num_cmp(other as $nonsize)
}
#[inline]
fn num_eq(self, other: $size) -> bool {
self.num_eq(other as $nonsize)
}
#[inline]
fn num_ne(self, other: $size) -> bool {
self.num_ne(other as $nonsize)
}
#[inline]
fn num_lt(self, other: $size) -> bool {
self.num_lt(other as $nonsize)
}
#[inline]
fn num_gt(self, other: $size) -> bool {
self.num_gt(other as $nonsize)
}
#[inline]
fn num_le(self, other: $size) -> bool {
self.num_le(other as $nonsize)
}
#[inline]
fn num_ge(self, other: $size) -> bool {
self.num_ge(other as $nonsize)
}
}
)*);
}
// strategy 3: for two types T and U,
// (without loss of generality) when T can be always exactly casted to U,
// compare them by casting T to U.
macro_rules! impl_for_nonequal_types_with_casting {
($($big:ty, $small:ty;)*) => ($(
impl NumCmp<$small> for $big {
#[cfg(test)]
fn num_cmp_strategy(self, _other: $small) -> &'static str {
"strategy 3, big vs small"
}
#[inline]
fn num_cmp(self, other: $small) -> Option<Ordering> {
self.partial_cmp(&(other as $big))
}
#[inline]
fn num_eq(self, other: $small) -> bool {
self == other as $big
}
#[inline]
fn num_ne(self, other: $small) -> bool {
self != other as $big
}
#[inline]
fn num_lt(self, other: $small) -> bool {
self < other as $big
}
#[inline]
fn num_gt(self, other: $small) -> bool {
self > other as $big
}
#[inline]
fn num_le(self, other: $small) -> bool {
self <= other as $big
}
#[inline]
fn num_ge(self, other: $small) -> bool {
self >= other as $big
}
}
impl NumCmp<$big> for $small {
#[cfg(test)]
fn num_cmp_strategy(self, _other: $big) -> &'static str {
"strategy 3, small vs big"
}
#[inline]
fn num_cmp(self, other: $big) -> Option<Ordering> {
(self as $big).partial_cmp(&other)
}
#[inline]
fn num_eq(self, other: $big) -> bool {
self as $big == other
}
#[inline]
fn num_ne(self, other: $big) -> bool {
self as $big != other
}
#[inline]
fn num_lt(self, other: $big) -> bool {
(self as $big) < other
}
#[inline]
fn num_gt(self, other: $big) -> bool {
self as $big > other
}
#[inline]
fn num_le(self, other: $big) -> bool {
self as $big <= other
}
#[inline]
fn num_ge(self, other: $big) -> bool {
self as $big >= other
}
}
)*);
}
// strategy 4: for unsigned type T and signed type U,
// if bit size of T is no less than that of U,
// check if both operands are positive before doing the normal comparison in unsigned type.
macro_rules! impl_for_nonequal_types_with_different_signedness {
($($unsigned:ty, $signed:ty;)*) => ($(
impl NumCmp<$signed> for $unsigned {
#[cfg(test)]
fn num_cmp_strategy(self, _other: $signed) -> &'static str {
"strategy 4, unsigned vs signed"
}
#[inline]
fn num_cmp(self, other: $signed) -> Option<Ordering> {
if other < 0 {
Some(Ordering::Greater)
} else {
self.partial_cmp(&(other as $unsigned))
}
}
#[inline]
fn num_eq(self, other: $signed) -> bool {
other >= 0 && self == other as $unsigned
}
#[inline]
fn num_ne(self, other: $signed) -> bool {
other < 0 || self != other as $unsigned
}
#[inline]
fn num_lt(self, other: $signed) -> bool {
other > 0 && self < other as $unsigned
}
#[inline]
fn num_gt(self, other: $signed) -> bool {
other < 0 || self > other as $unsigned
}
#[inline]
fn num_le(self, other: $signed) -> bool {
other >= 0 && self <= other as $unsigned
}
#[inline]
fn num_ge(self, other: $signed) -> bool {
other <= 0 || self >= other as $unsigned
}
}
impl NumCmp<$unsigned> for $signed {
#[cfg(test)]
fn num_cmp_strategy(self, _other: $unsigned) -> &'static str {
"strategy 4, signed vs unsigned"
}
#[inline]
fn num_cmp(self, other: $unsigned) -> Option<Ordering> {
if self < 0 {
Some(Ordering::Less)
} else {
(self as $unsigned).partial_cmp(&other)
}
}
#[inline]
fn num_eq(self, other: $unsigned) -> bool {
self >= 0 && self as $unsigned == other
}
#[inline]
fn num_ne(self, other: $unsigned) -> bool {
self < 0 || self as $unsigned != other
}
#[inline]
fn num_lt(self, other: $unsigned) -> bool {
self < 0 || (self as $unsigned) < other
}
#[inline]
fn num_gt(self, other: $unsigned) -> bool {
self > 0 && self as $unsigned > other
}
#[inline]
fn num_le(self, other: $unsigned) -> bool {
self <= 0 || self as $unsigned <= other
}
#[inline]
fn num_ge(self, other: $unsigned) -> bool {
self >= 0 && self as $unsigned >= other
}
}
)*);
}
// strategy 5: for two types T and U,
// when T can be casted to U but it may result in precision loss,
// first bound the operand in type U to the domain of type T;
// when testing equality the bound failure means the inequality,
// otherwise we convert to the appropriate value in type T so that the comparison can continue.
//
// since all integral conversion does not lose precision (but can be out of range),
// T is guaranteed to be integral while U is guaranteed to be floating-point.
// it is possible that bounds themselves can be overflown (especially when T=u128, U=f32).
//
// for general comparison we have the following useful observation:
//
// where `a cmp b` is a general partial ordering operator (like `PartialOrd::partial_cmp`)
// and `trunc(x)` is `x` rounded towards zero (i.e. trunc(3.5) = 3, trunc(-3.5) = -3),
// if `a` is an integer, `a cmp b` equals to `(a, trunc(b)) cmp (trunc(b), b)`.
// (we assume that the tuple is ordered lexicographically.)
//
// the proof involves an equality `floor(x) <= trunc(x) <= ceil(x)`,
// and inequalities `n < x <=> n < ceil(x)` and `x < n <=> floor(x) < n` for integer `n`.
// when `a < trunc(b)` it follows that `a < trunc(b) <= ceil(b)`, which implies `a < b`;
// when `a > trunc(b)` it follows that `a > trunc(b) >= floor(b)`, which implies `a > b`;
// when `a = trunc(b)` any inequality `trunc(b) op b` follows that `a = trunc(b) op b`,
// which clearly implies `a op b` as intended. Q.E.D.
//
// since `a` and `trunc(b)` can be made into the same type after bounds checking,
// this gives very uniform and simple way to compare numbers.
// we of course rely on the fact that the range of `trunc(a)` is smaller than the domain of `a`.
// requires that the float operand is not NaN and in the ($lb, $ub) range
macro_rules! trunc_cmp {
(int $lhs:expr, $method:ident, float $rhs:expr;
($lb:expr) <= ($intty:ty) < ($ub:expr)) => ({
let rhsint = $rhs.trunc();
debug_assert!($lb <= rhsint && rhsint < $ub);
($lhs, rhsint).$method(&(rhsint as $intty, $rhs))
});
(float $lhs:expr, $method:ident, int $rhs:expr;
($lb:expr) <= ($intty:ty) < ($ub:expr)) => ({
let lhsint = $lhs.trunc();
debug_assert!($lb <= lhsint && lhsint < $ub);
(lhsint as $intty, $lhs).$method(&($rhs, lhsint))
});
}
macro_rules! impl_for_int_and_float_types_with_bounds_check {
($($float:ty, $int:ty, ($lb:expr) <= _ < ($ub:expr);)*) => ($(
impl NumCmp<$int> for $float {
#[cfg(test)]
fn num_cmp_strategy(self, _other: $int) -> &'static str {
"strategy 5, float vs int"
}
#[inline]
fn num_cmp(self, other: $int) -> Option<Ordering> {
if self < $lb {
Some(Ordering::Less)
} else if $ub <= self {
Some(Ordering::Greater)
} else if self == self {
trunc_cmp!(float self, partial_cmp, int other; ($lb) <= ($int) < ($ub))
} else {
None
}
}
#[inline]
fn num_eq(self, other: $int) -> bool {
$lb <= self && self < $ub && trunc_cmp!(float self, eq, int other;
($lb) <= ($int) < ($ub))
}
#[inline]
fn num_ne(self, other: $int) -> bool {
// we cannot blindly apply De Morgan's law; we need to catch NaN early on
!($lb <= self && self < $ub) || trunc_cmp!(float self, ne, int other;
($lb) <= ($int) < ($ub))
}
#[inline]
fn num_lt(self, other: $int) -> bool {
self < $ub && (self < $lb || trunc_cmp!(float self, lt, int other;
($lb) <= ($int) < ($ub)))
}
#[inline]
fn num_gt(self, other: $int) -> bool {
$lb <= self && ($ub <= self || trunc_cmp!(float self, gt, int other;
($lb) <= ($int) < ($ub)))
}
#[inline]
fn num_le(self, other: $int) -> bool {
self < $ub && (self < $lb || trunc_cmp!(float self, le, int other;
($lb) <= ($int) < ($ub)))
}
#[inline]
fn num_ge(self, other: $int) -> bool {
$lb <= self && ($ub <= self || trunc_cmp!(float self, ge, int other;
($lb) <= ($int) < ($ub)))
}
}
impl NumCmp<$float> for $int {
#[cfg(test)]
fn num_cmp_strategy(self, _other: $float) -> &'static str {
"strategy 5, int vs float"
}
#[inline]
fn num_cmp(self, other: $float) -> Option<Ordering> {
if other < $lb {
Some(Ordering::Greater)
} else if $ub <= other {
Some(Ordering::Less)
} else if other == other {
trunc_cmp!(int self, partial_cmp, float other; ($lb) <= ($int) < ($ub))
} else {
None
}
}
#[inline]
fn num_eq(self, other: $float) -> bool {
$lb <= other && other < $ub && trunc_cmp!(int self, eq, float other;
($lb) <= ($int) < ($ub))
}
#[inline]
fn num_ne(self, other: $float) -> bool {
// we cannot blindly apply De Morgan's law; we need to catch NaN early on
!($lb <= other && other < $ub) || trunc_cmp!(int self, ne, float other;
($lb) <= ($int) < ($ub))
}
#[inline]
fn num_lt(self, other: $float) -> bool {
$lb <= other && ($ub <= other || trunc_cmp!(int self, lt, float other;
($lb) <= ($int) < ($ub)))
}
#[inline]
fn num_gt(self, other: $float) -> bool {
other < $ub && (other < $lb || trunc_cmp!(int self, gt, float other;
($lb) <= ($int) < ($ub)))
}
#[inline]
fn num_le(self, other: $float) -> bool {
$lb <= other && ($ub <= other || trunc_cmp!(int self, le, float other;
($lb) <= ($int) < ($ub)))
}
#[inline]
fn num_ge(self, other: $float) -> bool {
other < $ub && (other < $lb || trunc_cmp!(int self, ge, float other;
($lb) <= ($int) < ($ub)))
}
}
)*);
}
// actual implementations.
// there should be 12 * 12 = 144 implementations for the NumCmp trait
// (or 14 * 14 = 196 implementations if the `i128` feature is enabled).
impl_for_equal_types! {
u8; u16; u32; u64; usize;
i8; i16; i32; i64; isize;
f32; f64;
}
#[cfg(feature = "i128")]
impl_for_equal_types! {
u128;
i128;
}
#[cfg(target_pointer_width = "32")]
impl_for_size_types! {
usize => u32, u8; isize => i32, u8;
usize => u32, u16; isize => i32, u16;
usize => u32, u32; isize => i32, u32;
usize => u32, u64; isize => i32, u64;
usize => u32, i8; isize => i32, i8;
usize => u32, i16; isize => i32, i16;
usize => u32, i32; isize => i32, i32;
usize => u32, i64; isize => i32, i64;
usize => u32, f32; isize => i32, f32;
usize => u32, f64; isize => i32, f64;
}
#[cfg(target_pointer_width = "64")]
impl_for_size_types! {
usize => u64, u8; isize => i64, u8;
usize => u64, u16; isize => i64, u16;
usize => u64, u32; isize => i64, u32;
usize => u64, u64; isize => i64, u64;
usize => u64, i8; isize => i64, i8;
usize => u64, i16; isize => i64, i16;
usize => u64, i32; isize => i64, i32;
usize => u64, i64; isize => i64, i64;
usize => u64, f32; isize => i64, f32;
usize => u64, f64; isize => i64, f64;
}
#[cfg(all(target_pointer_width = "32", feature = "i128"))]
impl_for_size_types! {
usize => u32, u128; isize => i32, u128;
usize => u32, i128; isize => i32, i128;
}
#[cfg(all(target_pointer_width = "64", feature = "i128"))]
impl_for_size_types! {
usize => u64, u128; isize => i64, u128;
usize => u64, i128; isize => i64, i128;
}
impl_for_nonequal_types_with_casting! {
// uN, uM for N > M
u64, u8; u32, u8; u16, u8;
u64, u16; u32, u16;
u64, u32;
// iN, iM for N > M
i64, i8; i32, i8; i16, i8;
i64, i16; i32, i16;
i64, i32;
// iN, uM for N > M
i64, u8; i32, u8; i16, u8;
i64, u16; i32, u16;
i64, u32;
// fN, fM for N > M
f64, f32;
// f32, uM for 24 >= M, since f32 can exactly represent all integers (-2^24,2^24)
// f64, uM for 53 >= M, since f64 can exactly represent all integers (-2^53,2^53)
f32, u8; f32, u16;
f64, u8; f64, u16; f64, u32;
// f32, iM for 24 >= M
// f64, iM for 53 >= M
// since iM's range [-2^(M-1),2^(M-1)) includes -2^(M-1), bounds do not change
f32, i8; f32, i16;
f64, i8; f64, i16; f64, i32;
}
#[cfg(feature = "i128")]
impl_for_nonequal_types_with_casting! {
u128, u8; u128, u16; u128, u32; u128, u64;
i128, u8; i128, u16; i128, u32; i128, u64;
i128, i8; i128, i16; i128, i32; i128, i64;
}
impl_for_nonequal_types_with_different_signedness! {
u64, i8; u32, i8; u16, i8; u8, i8;
u64, i16; u32, i16; u16, i16;
u64, i32; u32, i32;
u64, i64;
usize, isize;
}
#[cfg(feature = "i128")]
impl_for_nonequal_types_with_different_signedness! {
u128, i8;
u128, i16;
u128, i32;
u128, i64;
u128, i128;
}
const U32_BOUND_IN_F32: f32 = 4294967296.0;
const I32_BOUND_IN_F32: f32 = 2147483648.0;
const U64_BOUND_IN_F32: f32 = 18446744073709551616.0;
const U64_BOUND_IN_F64: f64 = 18446744073709551616.0;
const I64_BOUND_IN_F32: f32 = 9223372036854775808.0;
const I64_BOUND_IN_F64: f64 = 9223372036854775808.0;
impl_for_int_and_float_types_with_bounds_check! {
// f32, uM for 24 < M
// f64, uM for 53 < M
f32, u32, (0.0) <= _ < (U32_BOUND_IN_F32);
f32, u64, (0.0) <= _ < (U64_BOUND_IN_F32);
f64, u64, (0.0) <= _ < (U64_BOUND_IN_F64);
// f32, iM for 24 < M
// f64, iM for 53 < M
f32, i32, (-I32_BOUND_IN_F32) <= _ < (I32_BOUND_IN_F32);
f32, i64, (-I64_BOUND_IN_F32) <= _ < (I64_BOUND_IN_F32);
f64, i64, (-I64_BOUND_IN_F64) <= _ < (I64_BOUND_IN_F64);
}
#[cfg(feature = "i128")] const U128_BOUND_IN_F32: f32 = std::f32::INFINITY;
#[cfg(feature = "i128")] const U128_BOUND_IN_F64: f64 = 340282366920938463463374607431768211456.0;
#[cfg(feature = "i128")] const I128_BOUND_IN_F32: f32 = 170141183460469231731687303715884105728.0;
#[cfg(feature = "i128")] const I128_BOUND_IN_F64: f64 = 170141183460469231731687303715884105728.0;
#[cfg(feature = "i128")]
impl_for_int_and_float_types_with_bounds_check! {
f32, u128, (0.0) <= _ < (U128_BOUND_IN_F32);
f64, u128, (0.0) <= _ < (U128_BOUND_IN_F64);
f32, i128, (-I128_BOUND_IN_F32) <= _ < (I128_BOUND_IN_F32);
f64, i128, (-I128_BOUND_IN_F64) <= _ < (I128_BOUND_IN_F64);
}
#[cfg(test)] mod tests;