1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
//! This crate provides efficient Modular arithmetic operations for various integer types,
//! including primitive integers and `num-bigint`. The latter option is enabled optionally.
//!
//! To achieve fast modular arithmetics, convert integers to any [ModularInteger] implementation
//! use static `new()` or associated [ModularInteger::convert()] functions. Some builtin implementations
//! of [ModularInteger] includes [MontgomeryInt] and [FixedMersenneInt].
//!
//! Example code:
//! ```rust
//! use num_modular::{ModularCoreOps, ModularInteger, MontgomeryInt};
//!
//! // directly using methods in ModularCoreOps
//! let (x, y, m) = (12u8, 13u8, 5u8);
//! assert_eq!(x.mulm(y, &m), x * y % m);
//!
//! // convert integers into ModularInteger
//! let mx = MontgomeryInt::new(x, &m);
//! let my = mx.convert(y); // faster than static MontgomeryInt::new(y, m)
//! assert_eq!((mx * my).residue(), x * y % m);
//! ```
//!
//! # Comparison of fast division / modular arithmetics
//! Several fast division / modulo tricks are provided in these crate, the difference of them are listed below:
//! - [PreInv]: pre-compute modular inverse of the divisor, only applicable to exact division
//! - Barret (to be implemented): pre-compute (rational approximation of) the reciprocal of the divisor,
//! applicable to fast division and modulo
//! - [Montgomery]: Convert the dividend into a special form by shifting and pre-compute a modular inverse,
//! only applicable to fast modulo, but faster than Barret reduction
//! - [FixedMersenne]: Specialization of modulo in form `2^P-K` under 2^127.
//!
// XXX: Other fast modular arithmetic tricks
// REF: https://github.com/lemire/fastmod & https://arxiv.org/pdf/1902.01961.pdf
// REF: https://eprint.iacr.org/2014/040.pdf
// REF: https://github.com/ridiculousfish/libdivide/
// REF: Faster Interleaved Modular Multiplication Based on Barrett and Montgomery Reduction Methods (work for modulus in certain form)
#![no_std]
#[cfg(any(feature = "std", test))]
extern crate std;
use core::ops::{Add, Mul, Neg, Sub};
/// Core modular arithmetic operations.
///
/// Note that all functions will panic if the modulus is zero.
pub trait ModularCoreOps<Rhs = Self, Modulus = Self> {
type Output;
/// Return (self + rhs) % m
fn addm(self, rhs: Rhs, m: Modulus) -> Self::Output;
/// Return (self - rhs) % m
fn subm(self, rhs: Rhs, m: Modulus) -> Self::Output;
/// Return (self * rhs) % m
fn mulm(self, rhs: Rhs, m: Modulus) -> Self::Output;
}
/// Core unary modular arithmetics
///
/// Note that all functions will panic if the modulus is zero.
pub trait ModularUnaryOps<Modulus = Self> {
type Output;
/// Return (-self) % m and make sure the result is normalized in range [0,m)
fn negm(self, m: Modulus) -> Self::Output;
/// Calculate modular inverse (x such that self*x = 1 mod m).
///
/// This operation is only available for integer that is coprime to `m`. If not,
/// the result will be [None].
fn invm(self, m: Modulus) -> Option<Self::Output>;
/// Calculate modular double ( x+x mod m)
fn dblm(self, m: Modulus) -> Self::Output;
/// Calculate modular square ( x*x mod m )
fn sqm(self, m: Modulus) -> Self::Output;
// TODO: Modular sqrt aka Quadratic residue, follow the behavior of FLINT `n_sqrtmod`
// fn sqrtm(self, m: Modulus) -> Option<Self::Output>;
// REF: https://stackoverflow.com/questions/6752374/cube-root-modulo-p-how-do-i-do-this
}
/// Modular power functions
pub trait ModularPow<Exp = Self, Modulus = Self> {
type Output;
/// Return (self ^ exp) % m
fn powm(self, exp: Exp, m: Modulus) -> Self::Output;
}
/// Math symbols related to modular arithmetics
pub trait ModularSymbols<Modulus = Self> {
/// Calculate Legendre Symbol (a|n), where a is self.
///
/// Note that this function doesn't perform primality check, since
/// is costly. So if n is not a prime, the result is not reasonable.
///
/// # Panics
/// if n is not prime
#[inline]
fn legendre(&self, n: Modulus) -> i8 {
self.checked_legendre(n).expect("n shoud be a prime")
}
/// Checked version of [legendre()][ModularSymbols::legendre], return [None] if n is not prime
fn checked_legendre(&self, n: Modulus) -> Option<i8>;
/// Calculate Jacobi Symbol (a|n), where a is self
///
/// # Panics
/// if n is negative or even
#[inline]
fn jacobi(&self, n: Modulus) -> i8 {
self.checked_jacobi(n)
.expect("the Jacobi symbol is only defined for non-negative odd integers")
}
/// Checked version of [jacobi()][ModularSymbols::jacobi], return [None] if n is negative or even
fn checked_jacobi(&self, n: Modulus) -> Option<i8>;
/// Calculate Kronecker Symbol (a|n), where a is self
fn kronecker(&self, n: Modulus) -> i8;
}
// TODO: Discrete log aka index, follow the behavior of FLINT `n_discrete_log_bsgs`
// REF: https://github.com/vks/discrete-log
// fn logm(self, base: Modulus, m: Modulus);
/// Collection of common modular arithmetic operations
pub trait ModularOps<Rhs = Self, Modulus = Self, Output = Self>:
ModularCoreOps<Rhs, Modulus, Output = Output>
+ ModularUnaryOps<Modulus, Output = Output>
+ ModularPow<Rhs, Modulus, Output = Output>
+ ModularSymbols<Modulus>
{
}
impl<T, Rhs, Modulus> ModularOps<Rhs, Modulus> for T where
T: ModularCoreOps<Rhs, Modulus, Output = T>
+ ModularUnaryOps<Modulus, Output = T>
+ ModularPow<Rhs, Modulus, Output = T>
+ ModularSymbols<Modulus>
{
}
/// Collection of operations similar to [ModularOps], but takes operands with references
pub trait ModularRefOps: for<'r> ModularOps<&'r Self, &'r Self> + Sized {}
impl<T> ModularRefOps for T where T: for<'r> ModularOps<&'r T, &'r T> {}
/// Provides a utility function to convert signed integers into unsigned modular form
pub trait ModularAbs<Modulus> {
/// Return |self| % m
fn absm(self, m: &Modulus) -> Modulus;
}
/// Represents an number defined in a modulo ring ℤ/nℤ
///
/// The operators should panic if the modulus of two number
/// are not the same.
pub trait ModularInteger:
Sized
+ PartialEq
+ Add<Self, Output = Self>
+ Sub<Self, Output = Self>
+ Neg<Output = Self>
+ Mul<Self, Output = Self>
{
/// The underlying representation type of the integer
type Base;
/// Return the modulus of the ring
fn modulus(&self) -> Self::Base;
/// Return the normalized residue of this integer in the ring
fn residue(&self) -> Self::Base;
/// Check if the integer is zero
fn is_zero(&self) -> bool;
/// Convert an normal integer into the same ring.
///
/// This method should be perferred over the static
/// constructor to prevent unnecessary overhead of pre-computation.
fn convert(&self, n: Self::Base) -> Self;
/// Calculate the value of self + self
fn double(self) -> Self;
/// Calculate the value of self * self
fn square(self) -> Self;
}
// XXX: implement this trait for ff::PrimeField?
// TODO: implement invm_range (Modular inverse in certain range) and crt (Chinese Remainder Theorem), REF: bubblemath crate
/// Utility function for exact division, with precomputed helper values
///
/// # Available Pre-computation types:
/// - `()`: No pre-computation, the implementation relies on native integer division
/// - [PreInv]: With Pre-computed modular inverse
pub trait DivExact<Rhs, Precompute>: Sized {
type Output;
/// Check if d divides self with the help of the precomputation. If d divides self,
/// then the quotient is returned.
fn div_exact(self, d: Rhs, pre: &Precompute) -> Option<Self::Output>;
}
/// A modular reducer that can ensure that the operations on integers are all performed
/// in a modular ring.
///
/// Essential information for performing the modulo operation will be stored in the reducer.
pub trait Reducer<T> {
/// Create a reducer for a modulus m
fn new(m: &T) -> Self;
/// Transform a normal integer into reduced form
fn transform(&self, target: T) -> T;
/// Get the modulus in original integer type
fn modulus(&self) -> T;
/// Transform a reduced form back to normal integer
fn residue(&self, target: T) -> T;
/// Test if the residue() == 0
fn is_zero(&self, target: &T) -> bool;
/// Calculate (lhs + rhs) mod m in reduced form
fn add(&self, lhs: T, rhs: T) -> T;
/// Calculate 2*target mod m
fn double(&self, target: T) -> T;
/// Calculate (lhs - rhs) mod m in reduced form
fn sub(&self, lhs: T, rhs: T) -> T;
/// Calculate -monty mod m in reduced form
fn neg(&self, target: T) -> T;
/// Calculate (lhs * rhs) mod m in reduced form
fn mul(&self, lhs: T, rhs: T) -> T;
/// Calculate target^-1 mod m in reduced form,
/// it may return None when there is no modular inverse.
fn inv(&self, target: T) -> Option<T>;
/// Calculate target^2 mod m in reduced form
fn square(&self, target: T) -> T;
/// Calculate base ^ exp mod m in reduced form
fn pow(&self, base: T, exp: T) -> T;
}
mod barret;
mod double;
mod mersenne;
mod monty;
mod preinv;
mod prim;
mod reduced;
pub use double::{udouble, umax};
pub use mersenne::FixedMersenne;
pub use monty::Montgomery;
pub use preinv::PreInv;
pub use reduced::{ReducedInt, Vanilla, VanillaInt};
/// An integer in modulo ring based on [Montgomery form](https://en.wikipedia.org/wiki/Montgomery_modular_multiplication#Montgomery_form)
pub type MontgomeryInt<T> = ReducedInt<T, Montgomery<T, T>>;
/// An integer in modulo ring with a fixed (pseudo) Mersenne number as modulus
pub type FixedMersenneInt<const P: u8, const K: umax> = ReducedInt<umax, FixedMersenne<P, K>>;
// pub type BarretInt<T> = ReducedInt<T, BarretInt<T>>;
#[cfg(feature = "num-bigint")]
mod bigint;