1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
//! Implementations and extensions for [PrimeBuffer], which represents a container of primes
//!
//! In `num-prime`, there is no global instance to store primes, the user has to generate
//! and store the primes themselves. The trait [PrimeBuffer] defines a unified interface
//! for a prime number container. Some methods that can take advantage of pre-generated
//! primes will be implemented in the [PrimeBufferExt] trait.
//!
//! We also provide [NaiveBuffer] as a simple implementation of [PrimeBuffer] without any
//! external dependencies. The performance of the [NaiveBuffer] will not be extremely optimized,
//! but it will be efficient enough for most applications.
//!

use crate::factor::{pollard_rho, trial_division};
use crate::nt_funcs::{
    factorize128, is_prime64, next_prime, nth_prime_bounds, nth_prime_est, prev_prime,
};
use crate::primality::{PrimalityBase, PrimalityRefBase};
use crate::tables::{SMALL_PRIMES, SMALL_PRIMES_NEXT};
use crate::traits::{
    FactorizationConfig, Primality, PrimalityTestConfig, PrimalityUtils, PrimeBuffer,
};
use bitvec::{bitvec, prelude::Msb0};
use lru::LruCache;
use num_integer::Roots;
use rand::random;
use std::collections::BTreeMap;
use std::num::NonZeroUsize;

/// Extension functions that can utilize pre-generated primes
pub trait PrimeBufferExt: for<'a> PrimeBuffer<'a> {
    /// Test if an integer is a prime.
    ///
    /// For targets smaller than 2^64, the deterministic [is_prime64] will be used, otherwise
    /// the primality test algorithms can be specified by the `config` argument.
    ///
    /// The primality test can be either deterministic or probabilistic for large integers depending on the `config`.
    /// The return value is represented by the enum [Primality], which tells whether the primality test is deterministic
    /// or probabilistic.
    fn is_prime<T: PrimalityBase>(
        &self,
        target: &T,
        config: Option<PrimalityTestConfig>,
    ) -> Primality
    where
        for<'r> &'r T: PrimalityRefBase<T>,
    {
        // shortcuts
        if target.is_even() {
            return if target == &T::from_u8(2u8).unwrap() {
                Primality::Yes
            } else {
                Primality::No
            };
        }

        // do deterministic test if target is under 2^64
        if let Some(x) = target.to_u64() {
            return match is_prime64(x) {
                true => Primality::Yes,
                false => Primality::No,
            };
        }

        let config = config.unwrap_or(PrimalityTestConfig::default());
        let mut probability = 1.;

        // miller-rabin test
        let mut witness_list: Vec<u64> = Vec::new();
        if config.sprp_trials > 0 {
            witness_list.extend(self.iter().take(config.sprp_trials));
            probability *= 1. - 0.25f32.powi(config.sprp_trials as i32);
        }
        if config.sprp_random_trials > 0 {
            for _ in 0..config.sprp_random_trials {
                // we have ensured target is larger than 2^64
                let mut w: u64 = rand::random();
                while witness_list.iter().find(|&x| x == &w).is_some() {
                    w = rand::random();
                }
                witness_list.push(w);
            }
            probability *= 1. - 0.25f32.powi(config.sprp_random_trials as i32);
        }
        if !witness_list
            .into_iter()
            .all(|x| target.is_sprp(T::from_u64(x).unwrap()))
        {
            return Primality::No;
        }

        // lucas probable prime test
        if config.slprp_test {
            probability *= 1. - 4f32 / 15f32;
            if !target.is_slprp(None, None) {
                return Primality::No;
            }
        }
        if config.eslprp_test {
            probability *= 1. - 4f32 / 15f32;
            if !target.is_eslprp(None) {
                return Primality::No;
            }
        }

        Primality::Probable(probability)
    }

    /// Factorize an integer.
    ///
    /// For targets smaller than 2^64, the efficient [factorize64] will be used, otherwise
    /// the primality test and factorization algorithms can be specified by the `config` argument.
    ///
    /// The factorization result consists of two parts. The first is a map from prime factors to their exponents.
    /// If the factorization failed, the second part will be the remaining cofactors that are not factored, otherwise None
    /// is returned for the second part. It's ensured that the product of prime factors (and remaining cofactors if exist)
    /// is equal to the original target.
    fn factors<T: PrimalityBase>(
        &self,
        target: T,
        config: Option<FactorizationConfig>,
    ) -> (BTreeMap<T, usize>, Option<Vec<T>>)
    where
        for<'r> &'r T: PrimalityRefBase<T>,
    {
        // shortcut if the target is in u128 range
        if let Some(x) = target.to_u128() {
            let factors = factorize128(x)
                .into_iter()
                .map(|(k, v)| (T::from_u128(k).unwrap(), v))
                .collect();
            return (factors, None);
        }
        let config = config.unwrap_or(FactorizationConfig::default());

        // test the existing primes
        let (result, factored) = trial_division(self.iter().cloned(), target, config.td_limit);
        let mut result: BTreeMap<T, usize> = result
            .into_iter()
            .map(|(k, v)| (T::from_u64(k).unwrap(), v))
            .collect();

        // TODO: check is_perfect_power before other methods

        // find factors by dividing
        let mut failed = Vec::new();
        let mut config = config;
        config.td_limit = Some(0); // disable trial division when finding divisor
        match factored {
            Ok(res) => {
                if !res.is_one() {
                    result.insert(res, 1);
                }
            }
            Err(res) => {
                let mut todo = vec![res];
                while let Some(target) = todo.pop() {
                    if self
                        .is_prime(&target, Some(config.primality_config))
                        .probably()
                    {
                        *result.entry(target).or_insert(0) += 1;
                    } else {
                        if let Some(divisor) = self.divisor(&target, &mut config) {
                            todo.push(divisor.clone());
                            todo.push(target / divisor);
                        } else {
                            failed.push(target);
                        }
                    }
                }
            }
        };

        if failed.is_empty() {
            (result, None)
        } else {
            (result, Some(failed))
        }
    }

    /// Factorize an integer until all prime factors are found.
    ///
    /// This function will try to call [factors] function repeatedly until the target
    /// is fully factorized.
    fn factorize<T: PrimalityBase>(&self, target: T) -> BTreeMap<T, usize>
    where
        for<'r> &'r T: PrimalityRefBase<T>,
    {
        // TODO: prevent overhead of repeat trial division
        loop {
            let (result, remainder) = self.factors(target.clone(), None);
            if remainder.is_none() {
                break result;
            }
        }
    }

    /// Return a proper divisor of target (randomly), even works for very large numbers.
    /// Return `None` if no factor is found.
    ///
    /// Note: this method will not do a primality check
    fn divisor<T: PrimalityBase>(&self, target: &T, config: &mut FactorizationConfig) -> Option<T>
    where
        for<'r> &'r T: PrimalityRefBase<T>,
    {
        if matches!(config.td_limit, Some(0)) {
            // try to get a factor by trial division
            let tsqrt: T = Roots::sqrt(target) + T::one();
            let limit = if let Some(l) = config.td_limit {
                tsqrt.clone().min(T::from_u64(l).unwrap())
            } else {
                tsqrt.clone()
            };

            for p in self.iter().map(|p| T::from_u64(*p).unwrap()) {
                if &p > &tsqrt {
                    return None; // the number is a prime
                }
                if &p > &limit {
                    break;
                }
                if target.is_multiple_of(&p) {
                    return Some(p);
                }
            }
        }

        // try to get a factor using pollard_rho with 4x4 trials
        let below64 = target.to_u64().is_some();
        while config.rho_trials > 0 {
            let (start, offset) = if below64 {
                (
                    T::from_u8(random::<u8>()).unwrap() % target,
                    T::from_u8(random::<u8>()).unwrap() % target,
                )
            } else {
                (
                    T::from_u64(random::<u64>()).unwrap() % target,
                    T::from_u64(random::<u64>()).unwrap() % target,
                )
            };
            config.rho_trials -= 1;
            // TODO: change to a reasonable pollard rho limit
            // TODO: add other factorization methods
            if let (Some(p), _) = pollard_rho(target, start, offset, 1048576) {
                return Some(p);
            }
        }

        None
    }
}

impl<T> PrimeBufferExt for T where for<'a> T: PrimeBuffer<'a> {}

/// NaiveBuffer implements a very simple Sieve of Eratosthenes
pub struct NaiveBuffer {
    list: Vec<u64>, // list of found prime numbers
    next: u64, // all primes smaller than this value has to be in the prime list, should be an odd number
}

impl NaiveBuffer {
    #[inline]
    pub fn new() -> Self {
        let list = SMALL_PRIMES.iter().map(|&p| p as u64).collect();
        NaiveBuffer {
            list,
            next: SMALL_PRIMES_NEXT,
        }
    }
}

impl<'a> PrimeBuffer<'a> for NaiveBuffer {
    type PrimeIter = std::slice::Iter<'a, u64>;

    fn contains(&self, num: u64) -> bool {
        self.list.binary_search(&num).is_ok()
    }

    fn clear(&mut self) {
        self.list.truncate(16);
        self.list.shrink_to_fit();
        self.next = 55; // 16-th prime is 53
    }

    fn iter(&'a self) -> Self::PrimeIter {
        self.list.iter()
    }

    fn bound(&self) -> u64 {
        *self.list.last().unwrap()
    }

    fn reserve(&mut self, limit: u64) {
        let sieve_limit = (limit | 1) + 2; // make sure sieving limit is odd and larger than limit
        let current = self.next; // prevent borrowing self
        debug_assert!(current % 2 == 1);
        if sieve_limit < current {
            return;
        }

        // create sieve and filter with existing primes
        let mut sieve = bitvec![usize, Msb0; 0; ((sieve_limit - current) / 2) as usize];
        for p in self.list.iter().skip(1) {
            // skip pre-filtered 2
            let start = if p * p < current {
                p * ((current / p) | 1) // start from an odd factor
            } else {
                p * p
            };
            for multi in (start..sieve_limit).step_by(2 * (*p as usize)) {
                if multi >= current {
                    sieve.set(((multi - current) / 2) as usize, true);
                }
            }
        }

        // sieve with new primes
        for p in (current..Roots::sqrt(&sieve_limit) + 1).step_by(2) {
            for multi in (p * p..sieve_limit).step_by(2 * (p as usize)) {
                if multi >= current {
                    sieve.set(((multi - current) / 2) as usize, true);
                }
            }
        }

        // collect the sieve
        self.list
            .extend(sieve.iter_zeros().map(|x| (x as u64) * 2 + current));
        self.next = sieve_limit;
    }
}

impl NaiveBuffer {
    // FIXME: These functions could be implemented in the trait, but only after
    // RFC 2071 and https://github.com/cramertj/impl-trait-goals/issues/3

    /// Calculate the primorial function
    pub fn primorial<T: PrimalityBase + std::iter::Product>(&mut self, n: usize) -> T {
        self.nprimes(n).map(|&p| T::from_u64(p).unwrap()).product()
    }

    /// Returns all primes ≤ `limit`. The primes are sorted.
    // TODO: let primes return &[u64] instead of iterator, and create a separate iterator
    //       for endless prime iter. This can be a method in this trait, or standalone function,
    //       or implement as IntoIter. We can try to implement PrimeBuffer on primal first and see
    //       if it's reasonable to unifiy
    pub fn primes(&mut self, limit: u64) -> std::iter::Take<<Self as PrimeBuffer>::PrimeIter> {
        self.reserve(limit);
        let position = match self.list.binary_search(&limit) {
            Ok(p) => p + 1,
            Err(p) => p,
        }; // into_ok_or_err()
        return self.list.iter().take(position);
    }

    /// Returns all primes ≤ `limit` and takes ownership. The primes are sorted.
    pub fn into_primes(mut self, limit: u64) -> std::vec::IntoIter<u64> {
        self.reserve(limit);
        let position = match self.list.binary_search(&limit) {
            Ok(p) => p + 1,
            Err(p) => p,
        }; // into_ok_or_err()
        self.list.truncate(position);
        return self.list.into_iter();
    }

    /// Returns primes of certain amount counting from 2. The primes are sorted.
    pub fn nprimes(&mut self, count: usize) -> std::iter::Take<<Self as PrimeBuffer>::PrimeIter> {
        let (_, bound) = nth_prime_bounds(&(count as u64))
            .expect("Estimated size of the largest prime will be larger than u64 limit");
        self.reserve(bound);
        debug_assert!(self.list.len() >= count);
        self.list.iter().take(count)
    }

    /// Returns primes of certain amount counting from 2 and takes ownership. The primes are sorted.
    pub fn into_nprimes(mut self, count: usize) -> std::vec::IntoIter<u64> {
        let (_, bound) = nth_prime_bounds(&(count as u64))
            .expect("Estimated size of the largest prime will be larger than u64 limit");
        self.reserve(bound);
        debug_assert!(self.list.len() >= count);
        self.list.truncate(count);
        return self.list.into_iter();
    }

    /// Get the n-th prime (n counts from 1).
    ///
    /// Theoretically the result can be larger than 2^64, but it will takes forever to
    /// calculate that so we just return `u64` instead of `Option<u64>` here.
    pub fn nth_prime(&mut self, n: u64) -> u64 {
        if n < self.list.len() as u64 {
            return self.list[n as usize - 1];
        }

        // Directly sieve if the limit is small
        const THRESHOLD_NTH_PRIME_SIEVE: u64 = 4096;
        if n <= THRESHOLD_NTH_PRIME_SIEVE {
            return *self.nprimes(n as usize).last().unwrap();
        }

        // Check primes starting from estimation
        let mut x = prev_prime(&nth_prime_est(&n).unwrap(), None).unwrap();
        let mut pi = self.prime_pi(x);

        while pi > n {
            x = prev_prime(&x, None).unwrap();
            pi -= 1;
        }
        while pi < n {
            x = next_prime(&x, None).unwrap();
            pi += 1;
        }
        x
    }

    /// Legendre's phi function, used as a helper function for [Self::prime_pi]
    pub fn prime_phi(&mut self, x: u64, a: usize, cache: &mut LruCache<(u64, usize), u64>) -> u64 {
        if a == 1 {
            return (x + 1) / 2;
        }
        if let Some(v) = cache.get(&(x, a)) {
            return *v;
        }
        let t1 = self.prime_phi(x, a - 1, cache);
        let pa = self.nth_prime(a as u64);
        let t2 = self.prime_phi(x / pa, a - 1, cache);
        let t = t1 - t2;
        cache.put((x, a), t);
        t
    }

    /// Calculate the prime π function, i.e. number of primes ≤ `limit`.
    ///
    /// Meissel-Lehmer method will be used if the input `limit` is large enough.
    pub fn prime_pi(&mut self, limit: u64) -> u64 {
        // Directly sieve if the limit is small
        const THRESHOLD_PRIME_PI_SIEVE: u64 = 38873; // 4096th prime
        if &limit <= self.list.last().unwrap() || limit <= THRESHOLD_PRIME_PI_SIEVE {
            self.reserve(limit);

            return match self.list.binary_search(&limit) {
                Ok(pos) => (pos + 1) as u64,
                Err(pos) => pos as u64,
            };
        }

        // Then use Meissel-Lehmer method.
        let b = limit.sqrt();
        let a = b.sqrt();
        let c = limit.cbrt();
        self.reserve(b);

        let a = self.prime_pi(a);
        let b = self.prime_pi(b);
        let c = self.prime_pi(c);

        let cache_cap = NonZeroUsize::new(a as usize).unwrap(); // a > 0 because limit > THRESHOLD_PRIME_PI_SIEVE
        let mut phi_cache = LruCache::new(cache_cap);
        let mut sum =
            self.prime_phi(limit, a as usize, &mut phi_cache) + (b + a - 2) * (b - a + 1) / 2;
        for i in a + 1..b + 1 {
            let w = limit / self.nth_prime(i);
            sum -= self.prime_pi(w);
            if i <= c {
                let l = self.prime_pi(w.sqrt());
                sum += (l * (l - 1) - i * (i - 3)) / 2 - 1;
                for j in i..(l + 1) {
                    let pj = self.nth_prime(j);
                    sum -= self.prime_pi(w / pj);
                }
            }
        }
        return sum;
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::mint::SmallMint;
    #[cfg(feature = "num-bigint")]
    use core::str::FromStr;
    #[cfg(feature = "num-bigint")]
    use num_bigint::BigUint;
    use rand::random;

    #[test]
    fn prime_generation_test() {
        const PRIME50: [u64; 15] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47];
        const PRIME300: [u64; 62] = [
            2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
            89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179,
            181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271,
            277, 281, 283, 293,
        ];

        let mut pb = NaiveBuffer::new();
        assert_eq!(pb.primes(50).cloned().collect::<Vec<_>>(), PRIME50);
        assert_eq!(pb.primes(300).cloned().collect::<Vec<_>>(), PRIME300);

        // test when limit itself is a prime
        pb.clear();
        assert_eq!(pb.primes(293).cloned().collect::<Vec<_>>(), PRIME300);
        pb = NaiveBuffer::new();
        assert_eq!(*pb.primes(257).last().unwrap(), 257); // boundary of small table
        pb = NaiveBuffer::new();
        assert_eq!(*pb.primes(8167).last().unwrap(), 8167); // boundary of large table
    }

    #[test]
    fn nth_prime_test() {
        let mut pb = NaiveBuffer::new();
        assert_eq!(pb.nth_prime(10000), 104729);
        assert_eq!(pb.nth_prime(20000), 224737);
        assert_eq!(pb.nth_prime(10000), 104729); // use existing primes

        // Riemann zeta based, test on OEIS:A006988
        assert_eq!(pb.nth_prime(10u64.pow(4)), 104729);
        assert_eq!(pb.nth_prime(10u64.pow(5)), 1299709);
        assert_eq!(pb.nth_prime(10u64.pow(6)), 15485863);
        assert_eq!(pb.nth_prime(10u64.pow(7)), 179424673);
    }

    #[test]
    fn prime_pi_test() {
        let mut pb = NaiveBuffer::new();
        assert_eq!(pb.prime_pi(8161), 1024); // 8161 is the 1024th prime
        assert_eq!(pb.prime_pi(10000), 1229);
        assert_eq!(pb.prime_pi(20000), 2262);
        assert_eq!(pb.prime_pi(38873), 4096);

        pb.clear(); // sieving from scratch
        assert_eq!(pb.prime_pi(8161), 1024);
        assert_eq!(pb.prime_pi(10000), 1229);
        assert_eq!(pb.prime_pi(20000), 2262);
        assert_eq!(pb.prime_pi(10000), 1229); // use existing primes

        // Meissel–Lehmer algorithm, test on OEIS:A006880
        assert_eq!(pb.prime_pi(10u64.pow(5)), 9592);
        assert_eq!(pb.prime_pi(10u64.pow(6)), 78498);
        assert_eq!(pb.prime_pi(10u64.pow(7)), 664579);
        assert_eq!(pb.prime_pi(10u64.pow(8)), 5761455);
    }

    #[test]
    fn is_prime_test() {
        // test for is_prime
        let pb = NaiveBuffer::new();

        // some mersenne numbers
        assert_eq!(pb.is_prime(&(2u32.pow(19) - 1), None), Primality::Yes);
        assert_eq!(pb.is_prime(&(2u32.pow(23) - 1), None), Primality::No);
        assert!(matches!(
            pb.is_prime(&(2u128.pow(89) - 1), None),
            Primality::Probable(_)
        ));
        assert!(matches!(
            pb.is_prime(&SmallMint::from(2u128.pow(89) - 1), None),
            Primality::Probable(_)
        ));

        // test against small prime assertion
        for _ in 0..100 {
            let target = random::<u64>();
            assert_eq!(
                !is_prime64(target),
                matches!(
                    pb.is_prime(&target, Some(PrimalityTestConfig::bpsw())),
                    Primality::No
                )
            );
        }

        // test large numbers
        const P: u128 = 18699199384836356663; // https://golang.org/issue/638
        assert!(matches!(pb.is_prime(&P, None), Primality::Probable(_)));
        assert!(matches!(
            pb.is_prime(&P, Some(PrimalityTestConfig::bpsw())),
            Primality::Probable(_)
        ));
        assert!(matches!(
            pb.is_prime(&SmallMint::from(P), None),
            Primality::Probable(_)
        ));
        assert!(matches!(
            pb.is_prime(&SmallMint::from(P), Some(PrimalityTestConfig::bpsw())),
            Primality::Probable(_)
        ));

        const P2: u128 = 2019922777445599503530083;
        assert!(matches!(pb.is_prime(&P2, None), Primality::Probable(_)));
        assert!(matches!(
            pb.is_prime(&P2, Some(PrimalityTestConfig::bpsw())),
            Primality::Probable(_)
        ));
        assert!(matches!(
            pb.is_prime(&SmallMint::from(P2), None),
            Primality::Probable(_)
        ));
        assert!(matches!(
            pb.is_prime(&SmallMint::from(P2), Some(PrimalityTestConfig::bpsw())),
            Primality::Probable(_)
        ));

        #[cfg(feature = "num-bigint")]
        {
            let large_primes = [
                "98920366548084643601728869055592650835572950932266967461790948584315647051443",
                "94560208308847015747498523884063394671606671904944666360068158221458669711639",

                // http://primes.utm.edu/lists/small/small3.html
                "449417999055441493994709297093108513015373787049558499205492347871729927573118262811508386655998299074566974373711472560655026288668094291699357843464363003144674940345912431129144354948751003607115263071543163",
                "230975859993204150666423538988557839555560243929065415434980904258310530753006723857139742334640122533598517597674807096648905501653461687601339782814316124971547968912893214002992086353183070342498989426570593",
                "5521712099665906221540423207019333379125265462121169655563495403888449493493629943498064604536961775110765377745550377067893607246020694972959780839151452457728855382113555867743022746090187341871655890805971735385789993",
                "203956878356401977405765866929034577280193993314348263094772646453283062722701277632936616063144088173312372882677123879538709400158306567338328279154499698366071906766440037074217117805690872792848149112022286332144876183376326512083574821647933992961249917319836219304274280243803104015000563790123",
                // ECC primes: http://tools.ietf.org/html/draft-ladd-safecurves-02
                "3618502788666131106986593281521497120414687020801267626233049500247285301239",                                                                                  // Curve1174: 2^251-9
                "57896044618658097711785492504343953926634992332820282019728792003956564819949",                                                                                 // Curve25519: 2^255-19
                "9850501549098619803069760025035903451269934817616361666987073351061430442874302652853566563721228910201656997576599",                                           // E-382: 2^382-105
                "42307582002575910332922579714097346549017899709713998034217522897561970639123926132812109468141778230245837569601494931472367",                                 // Curve41417: 2^414-17
                "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", // E-521: 2^521-1

                // https://github.com/AtropineTears/num-primes/issues/1#issuecomment-934629597
                "169511182982703321453314585423962898651587669459838234386506572286328885534468792292646838949809616446341407457141008401355628947670484184607678853094537849610289912805960069455687743151708433319901176932959509872662610091644590437761688516626993416011399330087939042347256922771590903190536793274742859624657"
            ];
            for pstr in large_primes {
                assert!(
                    pb.is_prime(&BigUint::from_str(pstr).unwrap(), None)
                        .probably(),
                    "false negative prime {}",
                    pstr
                )
            }

            let large_composites = [
                "21284175091214687912771199898307297748211672914763848041968395774954376176754",
                "6084766654921918907427900243509372380954290099172559290432744450051395395951",
                "84594350493221918389213352992032324280367711247940675652888030554255915464401",
                "82793403787388584738507275144194252681",

                // Arnault, "Rabin-Miller Primality Test: Composite Numbers Which Pass It",
                // Mathematics of Computation, 64(209) (January 1995), pp. 335-361.
                "1195068768795265792518361315725116351898245581", // strong pseudoprime to prime bases 2 through 29
                // strong pseudoprime to all prime bases up to 200
                "8038374574536394912570796143419421081388376882875581458374889175222974273765333652186502336163960045457915042023603208766569966760987284043965408232928738791850869166857328267761771029389697739470167082304286871099974399765441448453411558724506334092790222752962294149842306881685404326457534018329786111298960644845216191652872597534901",
            ];
            for cstr in large_composites {
                assert!(
                    !pb.is_prime(
                        &BigUint::from_str(cstr).unwrap(),
                        Some(PrimalityTestConfig::bpsw())
                    )
                    .probably(),
                    "false positive prime {}",
                    cstr
                )
            }
        }
    }

    #[test]
    fn pb_factors_test() {
        let pb = NaiveBuffer::new();

        #[cfg(feature = "num-bigint")]
        {
            let m131 = BigUint::from(2u8).pow(131) - 1u8; // m131/263 is a large prime
            let (fac, r) = pb.factors(m131, None);
            assert!(fac.len() == 2 && r.is_none());
        }
    }
}