1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
use core::fmt;

use crate::parse;

/// An Objective-C type-encoding.
///
/// Can be retrieved in Objective-C for a type `T` using the `@encode(T)`
/// directive.
/// ```objc
/// NSLog(@"Encoding of NSException: %s", @encode(NSException));
/// ```
///
/// The [`Display`][`fmt::Display`] implementation converts the [`Encoding`]
/// into its string representation, that the the `@encode` directive would
/// return. This can be used conveniently through the `to_string` method:
///
/// ```
/// use objc2_encode::Encoding;
/// assert_eq!(Encoding::Int.to_string(), "i");
/// ```
///
/// For more information on the string value of an encoding, see [Apple's
/// documentation][ocrtTypeEncodings].
///
/// [ocrtTypeEncodings]: https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtTypeEncodings.html
///
/// # Examples
///
/// Comparing an encoding to a string from the Objective-C runtime:
///
/// ```
/// use objc2_encode::Encoding;
/// assert!(Encoding::Array(10, &Encoding::FloatComplex).equivalent_to_str("[10jf]"));
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[non_exhaustive] // Maybe we're missing some encodings?
pub enum Encoding<'a> {
    /// A C `char`. Corresponds to the `c` code.
    Char,
    /// A C `short`. Corresponds to the `s` code.
    Short,
    /// A C `int`. Corresponds to the `i` code.
    Int,
    /// A C `long`. Corresponds to the `l` code.
    ///
    /// This is treated as a 32-bit quantity in 64-bit programs.
    // TODO: What does that mean??
    Long,
    /// A C `long long`. Corresponds to the `q` code.
    LongLong,
    /// A C `unsigned char`. Corresponds to the `C` code.
    UChar,
    /// A C `unsigned short`. Corresponds to the `S` code.
    UShort,
    /// A C `unsigned int`. Corresponds to the `I` code.
    UInt,
    /// A C `unsigned long`. Corresponds to the `L` code.
    ULong,
    /// A C `unsigned long long`. Corresponds to the `Q` code.
    ULongLong,
    /// A C `float`. Corresponds to the `f` code.
    Float,
    /// A C `double`. Corresponds to the `d` code.
    Double,
    /// A C `long double`. Corresponds to the `D` code.
    LongDouble,
    /// A C `float _Complex`. Corresponds to the `jf` code.
    FloatComplex,
    /// A C `_Complex` or `double _Complex`. Corresponds to the `jd` code.
    DoubleComplex,
    /// A C `long double _Complex`. Corresponds to the `jD` code.
    LongDoubleComplex,
    // TODO: Complex(&Encoding) ???
    /// A C++ `bool` / C99 `_Bool`. Corresponds to the `B` code.
    Bool,
    /// A C `void`. Corresponds to the `v` code.
    Void,
    /// A C `char *`. Corresponds to the `*` code.
    String,
    /// An Objective-C object (`id`). Corresponds to the `@` code.
    Object,
    /// An Objective-C block. Corresponds to the `@?` code.
    Block,
    /// An Objective-C class (`Class`). Corresponds to the `#` code.
    Class,
    /// An Objective-C selector (`SEL`). Corresponds to the `:` code.
    Sel,
    /// An unknown type. Corresponds to the `?` code.
    ///
    /// This is usually used to encode functions.
    Unknown,
    /// A bitfield with the given number of bits, and the given type.
    ///
    /// The type is not currently used, but may be in the future for better
    /// compatibility with Objective-C runtimes.
    ///
    /// Corresponds to the `b`num code.
    BitField(u8, &'a Encoding<'a>),
    /// A pointer to the given type.
    ///
    /// Corresponds to the `^`type code.
    Pointer(&'a Encoding<'a>),
    /// An array with the given length and type.
    ///
    /// Corresponds to the `[len type]` code.
    Array(usize, &'a Encoding<'a>),
    /// A struct with the given name and fields.
    ///
    /// The order of the fields must match the order of the order in this.
    ///
    /// It is not uncommon for the name to be `"?"`.
    ///
    /// Corresponds to the `{name=fields...}` code.
    Struct(&'a str, &'a [Encoding<'a>]),
    /// A union with the given name and fields.
    ///
    /// The order of the fields must match the order of the order in this.
    ///
    /// Corresponds to the `(name=fields...)` code.
    Union(&'a str, &'a [Encoding<'a>]),
    // "Vector" types have the '!' encoding, but are not implemented in clang

    // TODO: Atomic, const and other such specifiers
    // typedef struct x {
    //     int a;
    //     void* b;
    // } x_t;
    // NSLog(@"Encoding: %s", @encode(_Atomic x_t)); // -> A{x}
    // NSLog(@"Encoding: %s", @encode(const int*)); // -> r^i
    //
    // Note that const only applies to the outermost pointer!
    //
    // And how does atomic objects work?
    // core::sync::atomic::AtomicPtr<T: Message>?

    // TODO: `t` and `T` codes for i128 and u128?
}

impl Encoding<'_> {
    /// The encoding of [`c_long`](`std::os::raw::c_long`).
    ///
    /// Ideally the encoding of `long` would just be the same as `int` when
    /// it's 32 bits wide and the same as `long long` when it is 64 bits wide;
    /// then `c_long::ENCODING` would just work.
    ///
    /// Unfortunately, `long` have a different encoding than `int` when it is
    /// 32 bits wide; the [`l`][`Encoding::Long`] encoding.
    pub const C_LONG: Self = {
        // Alternative: `mem::size_of::<c_long>() == 4`
        // That would exactly match what `clang` does:
        // https://github.com/llvm/llvm-project/blob/release/13.x/clang/lib/AST/ASTContext.cpp#L7245
        if cfg!(any(target_pointer_width = "32", windows)) {
            // @encode(long) = 'l'
            Self::Long
        } else {
            // @encode(long) = 'q'
            Self::LongLong
        }
    };

    /// The encoding of [`c_ulong`](`std::os::raw::c_ulong`).
    ///
    /// See [`Encoding::C_LONG`] for explanation.
    pub const C_U_LONG: Self = {
        if cfg!(any(target_pointer_width = "32", windows)) {
            // @encode(unsigned long) = 'L'
            Encoding::ULong
        } else {
            // @encode(unsigned long) = 'Q'
            Encoding::ULongLong
        }
    };

    /// Check if one encoding is equivalent to another.
    ///
    /// Currently, equivalence testing requires that the encodings are equal,
    /// except for qualifiers. This may be changed in the future to e.g.
    /// ignore struct names, to allow structs behind multiple pointers to be
    /// considered equivalent, or similar changes that may be required because
    /// of limitations in Objective-C compiler implementations.
    ///
    /// For example, you should not rely on two equivalent encodings to have
    /// the same size or ABI - that is provided on a best-effort basis.
    pub fn equivalent_to(&self, other: &Self) -> bool {
        // For now, because we don't allow representing qualifiers
        self == other
    }

    /// Check if an encoding is equivalent to the given string representation.
    ///
    /// See [`Encoding::equivalent_to`] for details about the meaning of
    /// "equivalence".
    pub fn equivalent_to_str(&self, s: &str) -> bool {
        // if the given encoding can be successfully removed from the start
        // and an empty string remains, they were fully equivalent!
        if let Some(res) = self.equivalent_to_start_of_str(s) {
            res.is_empty()
        } else {
            false
        }
    }

    /// Check if an encoding is equivalent to the start of the given string
    /// representation.
    ///
    /// If it is equivalent, the remaining part of the string is returned.
    /// Otherwise this returns [`None`].
    ///
    /// See [`Encoding::equivalent_to`] for details about the meaning of
    /// "equivalence".
    pub fn equivalent_to_start_of_str<'a>(&self, s: &'a str) -> Option<&'a str> {
        // strip leading qualifiers
        let s = s.trim_start_matches(parse::QUALIFIERS);

        // TODO: Allow missing/"?" names in structs and unions?

        parse::rm_enc_prefix(s, self)
    }
}

/// Formats this [`Encoding`] in a similar way that the `@encode` directive
/// would ordinarily do.
///
/// You should not rely on the output of this to be stable across versions. It
/// may change if found to be required to be compatible with exisiting
/// Objective-C compilers.
impl fmt::Display for Encoding<'_> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        use Encoding::*;
        let code = match *self {
            Char => "c",
            Short => "s",
            Int => "i",
            Long => "l",
            LongLong => "q",
            UChar => "C",
            UShort => "S",
            UInt => "I",
            ULong => "L",
            ULongLong => "Q",
            Float => "f",
            Double => "d",
            LongDouble => "D",
            FloatComplex => "jf",
            DoubleComplex => "jd",
            LongDoubleComplex => "jD",
            Bool => "B",
            Void => "v",
            String => "*",
            Object => "@",
            Block => "@?",
            Class => "#",
            Sel => ":",
            Unknown => "?",
            BitField(b, _type) => {
                // TODO: Use the type on GNUStep
                return write!(formatter, "b{}", b);
            }
            Pointer(t) => {
                return write!(formatter, "^{}", t);
            }
            Array(len, item) => {
                return write!(formatter, "[{}{}]", len, item);
            }
            Struct(name, fields) => {
                write!(formatter, "{{{}=", name)?;
                for field in fields {
                    fmt::Display::fmt(field, formatter)?;
                }
                return formatter.write_str("}");
            }
            Union(name, members) => {
                write!(formatter, "({}=", name)?;
                for member in members {
                    fmt::Display::fmt(member, formatter)?;
                }
                return formatter.write_str(")");
            }
        };
        formatter.write_str(code)
    }
}

#[cfg(test)]
mod tests {
    use super::Encoding;
    use alloc::string::ToString;

    fn send_sync<T: Send + Sync>() {}

    #[test]
    fn test_send_sync() {
        send_sync::<Encoding<'_>>();
    }

    #[test]
    fn test_array_display() {
        let e = Encoding::Array(12, &Encoding::Int);
        assert_eq!(e.to_string(), "[12i]");
        assert!(e.equivalent_to_str("[12i]"));
    }

    #[test]
    fn test_pointer_display() {
        let e = Encoding::Pointer(&Encoding::Int);
        assert_eq!(e.to_string(), "^i");
        assert!(e.equivalent_to_str("^i"));
    }

    #[test]
    fn test_pointer_eq() {
        let i = Encoding::Int;
        let p = Encoding::Pointer(&Encoding::Int);

        assert_eq!(p, p);
        assert_ne!(p, i);
    }

    #[test]
    fn test_int_display() {
        assert_eq!(Encoding::Int.to_string(), "i");
        assert!(Encoding::Int.equivalent_to_str("i"));
    }

    #[test]
    fn test_eq() {
        let i = Encoding::Int;
        let c = Encoding::Char;

        assert_eq!(i, i);
        assert_ne!(i, c);
    }

    #[test]
    fn test_struct_display() {
        let s = Encoding::Struct("CGPoint", &[Encoding::Char, Encoding::Int]);
        assert_eq!(s.to_string(), "{CGPoint=ci}");
        assert!(s.equivalent_to_str("{CGPoint=ci}"));
    }

    #[test]
    fn test_struct_eq() {
        let s = Encoding::Struct("CGPoint", &[Encoding::Char, Encoding::Int]);
        assert_eq!(s, s);
        assert_ne!(s, Encoding::Int);
    }

    #[test]
    fn test_union_display() {
        let u = Encoding::Union("Onion", &[Encoding::Char, Encoding::Int]);
        assert_eq!(u.to_string(), "(Onion=ci)");
        assert!(u.equivalent_to_str("(Onion=ci)"));
    }

    #[test]
    fn test_union_eq() {
        let u = Encoding::Union("Onion", &[Encoding::Char, Encoding::Int]);
        assert_eq!(u, u);
        assert_ne!(u, Encoding::Int);
    }
}