1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
use core::fmt;
use crate::parse;
/// An Objective-C type-encoding.
///
/// Can be retrieved in Objective-C for a type `T` using the `@encode(T)`
/// directive.
/// ```objc
/// NSLog(@"Encoding of NSException: %s", @encode(NSException));
/// ```
///
/// The [`Display`][`fmt::Display`] implementation converts the [`Encoding`]
/// into its string representation, that the the `@encode` directive would
/// return. This can be used conveniently through the `to_string` method:
///
/// ```
/// use objc2_encode::Encoding;
/// assert_eq!(Encoding::Int.to_string(), "i");
/// ```
///
/// For more information on the string value of an encoding, see [Apple's
/// documentation][ocrtTypeEncodings].
///
/// [ocrtTypeEncodings]: https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtTypeEncodings.html
///
/// # Examples
///
/// Comparing an encoding to a string from the Objective-C runtime:
///
/// ```
/// use objc2_encode::Encoding;
/// assert!(Encoding::Array(10, &Encoding::FloatComplex).equivalent_to_str("[10jf]"));
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[non_exhaustive] // Maybe we're missing some encodings?
pub enum Encoding<'a> {
/// A C `char`. Corresponds to the `c` code.
Char,
/// A C `short`. Corresponds to the `s` code.
Short,
/// A C `int`. Corresponds to the `i` code.
Int,
/// A C `long`. Corresponds to the `l` code.
///
/// This is treated as a 32-bit quantity in 64-bit programs.
// TODO: What does that mean??
Long,
/// A C `long long`. Corresponds to the `q` code.
LongLong,
/// A C `unsigned char`. Corresponds to the `C` code.
UChar,
/// A C `unsigned short`. Corresponds to the `S` code.
UShort,
/// A C `unsigned int`. Corresponds to the `I` code.
UInt,
/// A C `unsigned long`. Corresponds to the `L` code.
ULong,
/// A C `unsigned long long`. Corresponds to the `Q` code.
ULongLong,
/// A C `float`. Corresponds to the `f` code.
Float,
/// A C `double`. Corresponds to the `d` code.
Double,
/// A C `long double`. Corresponds to the `D` code.
LongDouble,
/// A C `float _Complex`. Corresponds to the `jf` code.
FloatComplex,
/// A C `_Complex` or `double _Complex`. Corresponds to the `jd` code.
DoubleComplex,
/// A C `long double _Complex`. Corresponds to the `jD` code.
LongDoubleComplex,
// TODO: Complex(&Encoding) ???
/// A C++ `bool` / C99 `_Bool`. Corresponds to the `B` code.
Bool,
/// A C `void`. Corresponds to the `v` code.
Void,
/// A C `char *`. Corresponds to the `*` code.
String,
/// An Objective-C object (`id`). Corresponds to the `@` code.
Object,
/// An Objective-C block. Corresponds to the `@?` code.
Block,
/// An Objective-C class (`Class`). Corresponds to the `#` code.
Class,
/// An Objective-C selector (`SEL`). Corresponds to the `:` code.
Sel,
/// An unknown type. Corresponds to the `?` code.
///
/// This is usually used to encode functions.
Unknown,
/// A bitfield with the given number of bits, and the given type.
///
/// The type is not currently used, but may be in the future for better
/// compatibility with Objective-C runtimes.
///
/// Corresponds to the `b`num code.
BitField(u8, &'a Encoding<'a>),
/// A pointer to the given type.
///
/// Corresponds to the `^`type code.
Pointer(&'a Encoding<'a>),
/// An array with the given length and type.
///
/// Corresponds to the `[len type]` code.
Array(usize, &'a Encoding<'a>),
/// A struct with the given name and fields.
///
/// The order of the fields must match the order of the order in this.
///
/// It is not uncommon for the name to be `"?"`.
///
/// Corresponds to the `{name=fields...}` code.
Struct(&'a str, &'a [Encoding<'a>]),
/// A union with the given name and fields.
///
/// The order of the fields must match the order of the order in this.
///
/// Corresponds to the `(name=fields...)` code.
Union(&'a str, &'a [Encoding<'a>]),
// "Vector" types have the '!' encoding, but are not implemented in clang
// TODO: Atomic, const and other such specifiers
// typedef struct x {
// int a;
// void* b;
// } x_t;
// NSLog(@"Encoding: %s", @encode(_Atomic x_t)); // -> A{x}
// NSLog(@"Encoding: %s", @encode(const int*)); // -> r^i
//
// Note that const only applies to the outermost pointer!
//
// And how does atomic objects work?
// core::sync::atomic::AtomicPtr<T: Message>?
// TODO: `t` and `T` codes for i128 and u128?
}
impl Encoding<'_> {
/// The encoding of [`c_long`](`std::os::raw::c_long`).
///
/// Ideally the encoding of `long` would just be the same as `int` when
/// it's 32 bits wide and the same as `long long` when it is 64 bits wide;
/// then `c_long::ENCODING` would just work.
///
/// Unfortunately, `long` have a different encoding than `int` when it is
/// 32 bits wide; the [`l`][`Encoding::Long`] encoding.
pub const C_LONG: Self = {
// Alternative: `mem::size_of::<c_long>() == 4`
// That would exactly match what `clang` does:
// https://github.com/llvm/llvm-project/blob/release/13.x/clang/lib/AST/ASTContext.cpp#L7245
if cfg!(any(target_pointer_width = "32", windows)) {
// @encode(long) = 'l'
Self::Long
} else {
// @encode(long) = 'q'
Self::LongLong
}
};
/// The encoding of [`c_ulong`](`std::os::raw::c_ulong`).
///
/// See [`Encoding::C_LONG`] for explanation.
pub const C_U_LONG: Self = {
if cfg!(any(target_pointer_width = "32", windows)) {
// @encode(unsigned long) = 'L'
Encoding::ULong
} else {
// @encode(unsigned long) = 'Q'
Encoding::ULongLong
}
};
/// Check if one encoding is equivalent to another.
///
/// Currently, equivalence testing requires that the encodings are equal,
/// except for qualifiers. This may be changed in the future to e.g.
/// ignore struct names, to allow structs behind multiple pointers to be
/// considered equivalent, or similar changes that may be required because
/// of limitations in Objective-C compiler implementations.
///
/// For example, you should not rely on two equivalent encodings to have
/// the same size or ABI - that is provided on a best-effort basis.
pub fn equivalent_to(&self, other: &Self) -> bool {
// For now, because we don't allow representing qualifiers
self == other
}
/// Check if an encoding is equivalent to the given string representation.
///
/// See [`Encoding::equivalent_to`] for details about the meaning of
/// "equivalence".
pub fn equivalent_to_str(&self, s: &str) -> bool {
// if the given encoding can be successfully removed from the start
// and an empty string remains, they were fully equivalent!
if let Some(res) = self.equivalent_to_start_of_str(s) {
res.is_empty()
} else {
false
}
}
/// Check if an encoding is equivalent to the start of the given string
/// representation.
///
/// If it is equivalent, the remaining part of the string is returned.
/// Otherwise this returns [`None`].
///
/// See [`Encoding::equivalent_to`] for details about the meaning of
/// "equivalence".
pub fn equivalent_to_start_of_str<'a>(&self, s: &'a str) -> Option<&'a str> {
// strip leading qualifiers
let s = s.trim_start_matches(parse::QUALIFIERS);
// TODO: Allow missing/"?" names in structs and unions?
parse::rm_enc_prefix(s, self)
}
}
/// Formats this [`Encoding`] in a similar way that the `@encode` directive
/// would ordinarily do.
///
/// You should not rely on the output of this to be stable across versions. It
/// may change if found to be required to be compatible with exisiting
/// Objective-C compilers.
impl fmt::Display for Encoding<'_> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
use Encoding::*;
let code = match *self {
Char => "c",
Short => "s",
Int => "i",
Long => "l",
LongLong => "q",
UChar => "C",
UShort => "S",
UInt => "I",
ULong => "L",
ULongLong => "Q",
Float => "f",
Double => "d",
LongDouble => "D",
FloatComplex => "jf",
DoubleComplex => "jd",
LongDoubleComplex => "jD",
Bool => "B",
Void => "v",
String => "*",
Object => "@",
Block => "@?",
Class => "#",
Sel => ":",
Unknown => "?",
BitField(b, _type) => {
// TODO: Use the type on GNUStep
return write!(formatter, "b{}", b);
}
Pointer(t) => {
return write!(formatter, "^{}", t);
}
Array(len, item) => {
return write!(formatter, "[{}{}]", len, item);
}
Struct(name, fields) => {
write!(formatter, "{{{}=", name)?;
for field in fields {
fmt::Display::fmt(field, formatter)?;
}
return formatter.write_str("}");
}
Union(name, members) => {
write!(formatter, "({}=", name)?;
for member in members {
fmt::Display::fmt(member, formatter)?;
}
return formatter.write_str(")");
}
};
formatter.write_str(code)
}
}
#[cfg(test)]
mod tests {
use super::Encoding;
use alloc::string::ToString;
fn send_sync<T: Send + Sync>() {}
#[test]
fn test_send_sync() {
send_sync::<Encoding<'_>>();
}
#[test]
fn test_array_display() {
let e = Encoding::Array(12, &Encoding::Int);
assert_eq!(e.to_string(), "[12i]");
assert!(e.equivalent_to_str("[12i]"));
}
#[test]
fn test_pointer_display() {
let e = Encoding::Pointer(&Encoding::Int);
assert_eq!(e.to_string(), "^i");
assert!(e.equivalent_to_str("^i"));
}
#[test]
fn test_pointer_eq() {
let i = Encoding::Int;
let p = Encoding::Pointer(&Encoding::Int);
assert_eq!(p, p);
assert_ne!(p, i);
}
#[test]
fn test_int_display() {
assert_eq!(Encoding::Int.to_string(), "i");
assert!(Encoding::Int.equivalent_to_str("i"));
}
#[test]
fn test_eq() {
let i = Encoding::Int;
let c = Encoding::Char;
assert_eq!(i, i);
assert_ne!(i, c);
}
#[test]
fn test_struct_display() {
let s = Encoding::Struct("CGPoint", &[Encoding::Char, Encoding::Int]);
assert_eq!(s.to_string(), "{CGPoint=ci}");
assert!(s.equivalent_to_str("{CGPoint=ci}"));
}
#[test]
fn test_struct_eq() {
let s = Encoding::Struct("CGPoint", &[Encoding::Char, Encoding::Int]);
assert_eq!(s, s);
assert_ne!(s, Encoding::Int);
}
#[test]
fn test_union_display() {
let u = Encoding::Union("Onion", &[Encoding::Char, Encoding::Int]);
assert_eq!(u.to_string(), "(Onion=ci)");
assert!(u.equivalent_to_str("(Onion=ci)"));
}
#[test]
fn test_union_eq() {
let u = Encoding::Union("Onion", &[Encoding::Char, Encoding::Int]);
assert_eq!(u, u);
assert_ne!(u, Encoding::Int);
}
}