1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
//! Parsing encodings from their string representation.
#![deny(unsafe_code)]
use alloc::boxed::Box;
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use core::fmt;

use crate::helper::{ContainerKind, Helper, NestingLevel};
use crate::{Encoding, EncodingBox};

/// Check whether a struct or union name is a valid identifier
pub(crate) const fn verify_name(name: &str) -> bool {
    let bytes = name.as_bytes();

    if let b"?" = bytes {
        return true;
    }

    if bytes.is_empty() {
        return false;
    }

    let mut i = 0;
    while i < bytes.len() {
        let byte = bytes[i];
        if !(byte.is_ascii_alphanumeric() || byte == b'_') {
            return false;
        }
        i += 1;
    }
    true
}

/// The error that was encountered while parsing an encoding string.
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct ParseError {
    kind: ErrorKind,
    data: String,
    split_point: usize,
}

impl ParseError {
    pub(crate) fn new(parser: Parser<'_>, kind: ErrorKind) -> Self {
        Self {
            kind,
            data: parser.data.to_string(),
            split_point: parser.split_point,
        }
    }
}

impl fmt::Display for ParseError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "failed parsing encoding: {} at byte-index {} in {:?}",
            self.kind, self.split_point, self.data,
        )
    }
}

#[cfg(feature = "std")]
impl std::error::Error for ParseError {}

#[derive(Debug, PartialEq, Eq, Hash)]
pub(crate) enum ErrorKind {
    UnexpectedEnd,
    Unknown(u8),
    UnknownAfterComplex(u8),
    ExpectedInteger,
    IntegerTooLarge,
    WrongEndArray,
    WrongEndContainer(ContainerKind),
    InvalidIdentifier(ContainerKind),
    NotAllConsumed,
}

impl fmt::Display for ErrorKind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::UnexpectedEnd => write!(f, "unexpected end"),
            Self::Unknown(b) => {
                write!(f, "unknown encoding character {}", *b as char)
            }
            Self::UnknownAfterComplex(b) => {
                write!(f, "unknown encoding character {} after complex", *b as char,)
            }
            Self::ExpectedInteger => write!(f, "expected integer"),
            Self::IntegerTooLarge => write!(f, "integer too large"),
            Self::WrongEndArray => write!(f, "expected array to be closed"),
            Self::WrongEndContainer(kind) => {
                write!(f, "expected {kind} to be closed")
            }
            Self::InvalidIdentifier(kind) => {
                write!(f, "got invalid identifier in {kind}")
            }
            Self::NotAllConsumed => {
                write!(f, "remaining contents after parsing")
            }
        }
    }
}

type Result<T, E = ErrorKind> = core::result::Result<T, E>;

#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub(crate) struct Parser<'a> {
    data: &'a str,
    // Always "behind"/"at" the current character
    split_point: usize,
}

impl<'a> Parser<'a> {
    pub(crate) fn new(data: &'a str) -> Self {
        Self {
            split_point: 0,
            data,
        }
    }

    pub(crate) fn remaining(&self) -> &'a str {
        &self.data[self.split_point..]
    }

    fn peek(&self) -> Result<u8> {
        self.try_peek().ok_or(ErrorKind::UnexpectedEnd)
    }

    fn try_peek(&self) -> Option<u8> {
        self.data.as_bytes().get(self.split_point).copied()
    }

    fn try_peek2(&self) -> Option<(u8, u8)> {
        let bytes = self.data.as_bytes();
        Some((
            *bytes.get(self.split_point)?,
            *bytes.get(self.split_point + 1)?,
        ))
    }

    fn advance(&mut self) {
        self.split_point += 1;
    }

    fn consume_while(&mut self, mut condition: impl FnMut(u8) -> bool) {
        while let Some(b) = self.try_peek() {
            if condition(b) {
                self.advance();
            } else {
                break;
            }
        }
    }

    pub(crate) fn is_empty(&self) -> bool {
        self.try_peek().is_none()
    }

    pub(crate) fn expect_empty(&self) -> Result<()> {
        if self.is_empty() {
            Ok(())
        } else {
            Err(ErrorKind::NotAllConsumed)
        }
    }
}

impl Parser<'_> {
    /// Strip leading qualifiers, if any.
    pub(crate) fn strip_leading_qualifiers(&mut self) {
        // TODO: Add API for accessing and outputting qualifiers.
        const QUALIFIERS: &[u8] = &[
            b'r', // const
            b'n', // in
            b'N', // inout
            b'o', // out
            b'O', // bycopy
            b'R', // byref
            b'V', // oneway
        ];
        // TODO: b'|', // GCINVISIBLE

        self.consume_while(|b| QUALIFIERS.contains(&b));
    }

    /// Chomp until we hit a non-digit.
    ///
    /// + and - prefixes are not supported.
    fn chomp_digits(&mut self) -> Result<&str> {
        let old_split_point = self.split_point;

        // Parse first digit (which must be present).
        if !self.peek()?.is_ascii_digit() {
            return Err(ErrorKind::ExpectedInteger);
        }

        // Parse the rest, stopping if we hit a non-digit.
        self.consume_while(|b| b.is_ascii_digit());

        Ok(&self.data[old_split_point..self.split_point])
    }

    fn parse_u64(&mut self) -> Result<u64> {
        self.chomp_digits()?
            .parse()
            .map_err(|_| ErrorKind::IntegerTooLarge)
    }

    fn parse_u8(&mut self) -> Result<u8> {
        self.chomp_digits()?
            .parse()
            .map_err(|_| ErrorKind::IntegerTooLarge)
    }
}

/// Check if the data matches an expected value.
///
/// The errors here aren't currently used, so they're hackily set up.
impl Parser<'_> {
    fn expect_byte(&mut self, byte: u8) -> Option<()> {
        if self.try_peek()? == byte {
            self.advance();
            Some(())
        } else {
            None
        }
    }

    fn expect_str(&mut self, s: &str) -> Option<()> {
        for b in s.as_bytes() {
            self.expect_byte(*b)?;
        }
        Some(())
    }

    fn expect_u64(&mut self, int: u64) -> Option<()> {
        if self.parse_u64().ok()? == int {
            Some(())
        } else {
            None
        }
    }

    fn expect_u8(&mut self, int: u8) -> Option<()> {
        if self.parse_u8().ok()? == int {
            Some(())
        } else {
            None
        }
    }

    pub(crate) fn expect_encoding(&mut self, enc: &Encoding, level: NestingLevel) -> Option<()> {
        let helper = Helper::new(enc, level);
        match helper {
            Helper::Primitive(primitive) => self.expect_str(primitive.to_str()),
            Helper::BitField(size, Some((offset, t)), level) => {
                self.expect_byte(b'b')?;
                self.expect_u64(*offset)?;
                self.expect_encoding(t, level)?;
                self.expect_u8(size)
            }
            Helper::BitField(size, None, _level) => {
                self.expect_byte(b'b')?;
                self.expect_u8(size)
            }
            Helper::Indirection(kind, t, level) => {
                self.expect_byte(kind.prefix_byte())?;
                self.expect_encoding(t, level)
            }
            Helper::Array(len, item, level) => {
                self.expect_byte(b'[')?;
                self.expect_u64(len)?;
                self.expect_encoding(item, level)?;
                self.expect_byte(b']')
            }
            Helper::Container(kind, name, items, level) => {
                self.expect_byte(kind.start_byte())?;
                self.expect_str(name)?;
                if let Some(items) = items {
                    self.expect_byte(b'=')?;
                    for item in items {
                        self.expect_encoding(item, level)?;
                    }
                }
                self.expect_byte(kind.end_byte())
            }
        }
    }
}

impl Parser<'_> {
    fn parse_container(&mut self, kind: ContainerKind) -> Result<(&str, Option<Vec<EncodingBox>>)> {
        let old_split_point = self.split_point;

        // Parse name until hits `=`
        let has_items = loop {
            let b = self.try_peek().ok_or(ErrorKind::WrongEndContainer(kind))?;
            if b == b'=' {
                break true;
            } else if b == kind.end_byte() {
                break false;
            }
            self.advance();
        };

        let s = &self.data[old_split_point..self.split_point];

        if !verify_name(s) {
            return Err(ErrorKind::InvalidIdentifier(kind));
        }

        self.advance();

        if has_items {
            let mut items = Vec::new();
            // Parse items until hits end
            loop {
                let b = self.try_peek().ok_or(ErrorKind::WrongEndContainer(kind))?;
                if b == kind.end_byte() {
                    self.advance();
                    break;
                } else {
                    // Wasn't the end, so try to extract one more encoding
                    items.push(self.parse_encoding()?);
                }
            }
            Ok((s, Some(items)))
        } else {
            Ok((s, None))
        }
    }

    pub(crate) fn parse_encoding(&mut self) -> Result<EncodingBox> {
        self.try_parse_encoding()
            .and_then(|res| res.ok_or(ErrorKind::UnexpectedEnd))
    }

    fn try_parse_encoding(&mut self) -> Result<Option<EncodingBox>> {
        Ok(if let Some(b) = self.try_peek() {
            self.advance();
            Some(self.parse_encoding_inner(b)?)
        } else {
            None
        })
    }

    fn parse_encoding_inner(&mut self, b: u8) -> Result<EncodingBox> {
        Ok(match b {
            b'c' => EncodingBox::Char,
            b's' => EncodingBox::Short,
            b'i' => EncodingBox::Int,
            b'l' => EncodingBox::Long,
            b'q' => EncodingBox::LongLong,
            b'C' => EncodingBox::UChar,
            b'S' => EncodingBox::UShort,
            b'I' => EncodingBox::UInt,
            b'L' => EncodingBox::ULong,
            b'Q' => EncodingBox::ULongLong,
            b'f' => EncodingBox::Float,
            b'd' => EncodingBox::Double,
            b'D' => EncodingBox::LongDouble,
            b'j' => {
                let res = match self.peek()? {
                    b'f' => EncodingBox::FloatComplex,
                    b'd' => EncodingBox::DoubleComplex,
                    b'D' => EncodingBox::LongDoubleComplex,
                    b => return Err(ErrorKind::UnknownAfterComplex(b)),
                };
                self.advance();
                res
            }
            b'B' => EncodingBox::Bool,
            b'v' => EncodingBox::Void,
            b'*' => EncodingBox::String,
            b'@' => match self.try_peek() {
                // Special handling for blocks
                Some(b'?') => {
                    self.advance();
                    EncodingBox::Block
                }
                _ => EncodingBox::Object,
            },
            b'#' => EncodingBox::Class,
            b':' => EncodingBox::Sel,
            b'?' => EncodingBox::Unknown,

            b'b' => {
                let size_or_offset = self.parse_u64()?;
                if let Some((size, ty)) = self.try_parse_bitfield_gnustep()? {
                    let offset = size_or_offset;
                    EncodingBox::BitField(size, Some(Box::new((offset, ty))))
                } else {
                    let size = size_or_offset
                        .try_into()
                        .map_err(|_| ErrorKind::IntegerTooLarge)?;
                    EncodingBox::BitField(size, None)
                }
            }
            b'^' => EncodingBox::Pointer(Box::new(self.parse_encoding()?)),
            b'A' => EncodingBox::Atomic(Box::new(self.parse_encoding()?)),
            b'[' => {
                let len = self.parse_u64()?;
                let item = self.parse_encoding()?;
                self.expect_byte(b']').ok_or(ErrorKind::WrongEndArray)?;
                EncodingBox::Array(len, Box::new(item))
            }
            b'{' => {
                let kind = ContainerKind::Struct;
                let (name, items) = self.parse_container(kind)?;
                EncodingBox::Struct(name.to_string(), items)
            }
            b'(' => {
                let kind = ContainerKind::Union;
                let (name, items) = self.parse_container(kind)?;
                EncodingBox::Union(name.to_string(), items)
            }
            b => return Err(ErrorKind::Unknown(b)),
        })
    }

    fn try_parse_bitfield_gnustep(&mut self) -> Result<Option<(u8, EncodingBox)>> {
        if let Some((b1, b2)) = self.try_peek2() {
            // Try to parse the encoding.
            //
            // The encoding is always an integral type.
            let ty = match b1 {
                b'c' => EncodingBox::Char,
                b's' => EncodingBox::Short,
                b'i' => EncodingBox::Int,
                b'l' => EncodingBox::Long,
                b'q' => EncodingBox::LongLong,
                b'C' => EncodingBox::UChar,
                b'S' => EncodingBox::UShort,
                b'I' => EncodingBox::UInt,
                b'L' => EncodingBox::ULong,
                b'Q' => EncodingBox::ULongLong,
                b'B' => EncodingBox::Bool,
                _ => return Ok(None),
            };
            // And then check if a digit follows that (which the size would
            // always contain).
            if !b2.is_ascii_digit() {
                return Ok(None);
            }
            // We have a size; so let's advance...
            self.advance();
            // ...and parse it for real.
            let size = self.parse_u8()?;
            Ok(Some((size, ty)))
        } else {
            Ok(None)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloc::vec;

    #[test]
    fn parse_container() {
        const KIND: ContainerKind = ContainerKind::Struct;

        #[track_caller]
        fn assert_name(enc: &str, expected: Result<(&str, Option<Vec<EncodingBox>>)>) {
            let mut parser = Parser::new(enc);
            assert_eq!(parser.parse_container(KIND), expected);
        }

        assert_name("abc=}", Ok(("abc", Some(vec![]))));
        assert_name(
            "abc=ii}",
            Ok(("abc", Some(vec![EncodingBox::Int, EncodingBox::Int]))),
        );
        assert_name("_=}.a'", Ok(("_", Some(vec![]))));
        assert_name("abc}def", Ok(("abc", None)));
        assert_name("=def}", Err(ErrorKind::InvalidIdentifier(KIND)));
        assert_name(".=def}", Err(ErrorKind::InvalidIdentifier(KIND)));
        assert_name("}xyz", Err(ErrorKind::InvalidIdentifier(KIND)));
        assert_name("", Err(ErrorKind::WrongEndContainer(KIND)));
        assert_name("abc", Err(ErrorKind::WrongEndContainer(KIND)));
        assert_name("abc)def", Err(ErrorKind::WrongEndContainer(KIND)));
    }

    #[test]
    fn parse_bitfield() {
        #[track_caller]
        fn assert_bitfield(enc: &str, expected: Result<EncodingBox>) {
            let mut parser = Parser::new(enc);
            assert_eq!(
                parser
                    .parse_encoding()
                    .and_then(|enc| parser.expect_empty().map(|()| enc)),
                expected
            );
        }

        assert_bitfield("b8", Ok(EncodingBox::BitField(8, None)));
        assert_bitfield("b8C", Err(ErrorKind::NotAllConsumed));
        assert_bitfield(
            "b8C4",
            Ok(EncodingBox::BitField(
                4,
                Some(Box::new((8, EncodingBox::UChar))),
            )),
        );

        assert_bitfield(
            "{s=b8C}",
            Ok(EncodingBox::Struct(
                "s".into(),
                Some(vec![EncodingBox::BitField(8, None), EncodingBox::UChar]),
            )),
        );

        assert_bitfield("b2000", Err(ErrorKind::IntegerTooLarge));
        assert_bitfield(
            "b2000c100",
            Ok(EncodingBox::BitField(
                100,
                Some(Box::new((2000, EncodingBox::Char))),
            )),
        );
        assert_bitfield("b2000C257", Err(ErrorKind::IntegerTooLarge));
    }
}