1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
use core::fmt;
use crate::helper::{compare_encodings, Helper, NestingLevel};
use crate::parse::Parser;
use crate::EncodingBox;
/// An Objective-C type-encoding.
///
/// Can be retrieved in Objective-C for a type `T` using the `@encode(T)`
/// directive.
/// ```objc
/// NSLog(@"Encoding of NSException: %s", @encode(NSException));
/// ```
///
/// The [`Display`][`fmt::Display`] implementation converts the [`Encoding`]
/// into its string representation, that the the `@encode` directive would
/// return. This can be used conveniently through the `to_string` method:
///
/// ```
/// use objc2_encode::Encoding;
/// assert_eq!(Encoding::Int.to_string(), "i");
/// ```
///
/// For more information on the string value of an encoding, see [Apple's
/// documentation][ocrtTypeEncodings].
///
/// [ocrtTypeEncodings]: https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtTypeEncodings.html
///
/// # Examples
///
/// Comparing an encoding to a string from the Objective-C runtime:
///
/// ```
/// use objc2_encode::Encoding;
/// assert!(Encoding::Array(10, &Encoding::FloatComplex).equivalent_to_str("[10jf]"));
/// ```
// Not `Copy`, since this may one day be merged with `EncodingBox`
#[allow(missing_copy_implementations)]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
// See <https://en.cppreference.com/w/c/language/type>
#[non_exhaustive] // Maybe we're missing some encodings?
pub enum Encoding {
/// A C `char`. Corresponds to the `"c"` code.
Char,
/// A C `short`. Corresponds to the `"s"` code.
Short,
/// A C `int`. Corresponds to the `"i"` code.
Int,
/// A C `long`. Corresponds to the `"l"` code.
///
/// This is treated as a 32-bit quantity in 64-bit programs, see
/// [`Encoding::C_LONG`].
Long,
/// A C `long long`. Corresponds to the `"q"` code.
LongLong,
/// A C `unsigned char`. Corresponds to the `"C"` code.
UChar,
/// A C `unsigned short`. Corresponds to the `"S"` code.
UShort,
/// A C `unsigned int`. Corresponds to the `"I"` code.
UInt,
/// A C `unsigned long`. Corresponds to the `"L"` code.
///
/// See [`Encoding::C_ULONG`].
ULong,
/// A C `unsigned long long`. Corresponds to the `"Q"` code.
ULongLong,
/// A C `float`. Corresponds to the `"f"` code.
Float,
/// A C `double`. Corresponds to the `"d"` code.
Double,
/// A C `long double`. Corresponds to the `"D"` code.
LongDouble,
/// A C `float _Complex`. Corresponds to the `"j" "f"` code.
FloatComplex,
/// A C `_Complex` or `double _Complex`. Corresponds to the `"j" "d"` code.
DoubleComplex,
/// A C `long double _Complex`. Corresponds to the `"j" "D"` code.
LongDoubleComplex,
/// A C++ `bool` / C99 `_Bool`. Corresponds to the `"B"` code.
Bool,
/// A C `void`. Corresponds to the `"v"` code.
Void,
/// A C `char *`. Corresponds to the `"*"` code.
String,
/// An Objective-C object (`id`). Corresponds to the `"@"` code.
///
/// Some compilers may choose to store the name of the class in instance
/// variables and properties as `"@" class_name`, see [Extended Type Info
/// in Objective-C][ext] (note that this does not include generics).
///
/// Such class names are currently ignored by `objc2-encode`.
///
/// [ext]: https://bou.io/ExtendedTypeInfoInObjC.html
Object,
/// An Objective-C block. Corresponds to the `"@" "?"` code.
Block,
/// An Objective-C class (`Class`). Corresponds to the `"#"` code.
Class,
/// An Objective-C selector (`SEL`). Corresponds to the `":"` code.
Sel,
/// An unknown type. Corresponds to the `"?"` code.
///
/// This is usually used to encode functions.
Unknown,
/// A bitfield with the given number of bits, and the given type.
///
/// Corresponds to the `"b" size` code.
///
/// On GNUStep, this uses the `"b" offset type size` code, so this
/// contains an `Option` that should be set for that. Only integral types
/// are possible for the type.
///
/// A `BitField(_, Some(_))` and a `BitField(_, None)` do _not_ compare
/// equal; instead, you should set the bitfield correctly depending on the
/// target platform.
BitField(u8, Option<&'static (u64, Encoding)>),
/// A pointer to the given type.
///
/// Corresponds to the `"^" type` code.
Pointer(&'static Encoding),
/// A C11 [`_Atomic`] type.
///
/// Corresponds to the `"A" type` code. Not all encodings are possible in
/// this.
///
/// [`_Atomic`]: https://en.cppreference.com/w/c/language/atomic
Atomic(&'static Encoding),
/// An array with the given length and type.
///
/// Corresponds to the `"[" length type "]"` code.
Array(u64, &'static Encoding),
/// A struct with the given name and fields.
///
/// The order of the fields must match the order of the order in this.
///
/// It is not uncommon for the name to be `"?"`.
///
/// Corresponds to the `"{" name "=" fields... "}"` code.
///
/// Note that the `=` may be omitted in some situations; this is
/// considered equal to the case where there are no fields.
Struct(&'static str, &'static [Encoding]),
/// A union with the given name and members.
///
/// The order of the members must match the order of the order in this.
///
/// Corresponds to the `"(" name "=" members... ")"` code.
///
/// Note that the `=` may be omitted in some situations; this is
/// considered equal to the case where there are no members.
Union(&'static str, &'static [Encoding]),
/// The type does not have an Objective-C encoding.
///
/// This is usually only used on types where Clang fails to generate the
/// Objective-C encoding, like SIMD types marked with
/// `__attribute__((__ext_vector_type__(1)))`.
None,
// TODO: "Vector" types have the '!' encoding, but are not implemented in
// clang
// TODO: `t` and `T` codes for i128 and u128?
}
impl Encoding {
/// The encoding of [`c_long`](`std::os::raw::c_long`) on the current
/// target.
///
/// Ideally the encoding of `long` would be the same as `int` when it's 32
/// bits wide and the same as `long long` when it is 64 bits wide; then
/// `c_long::ENCODING` would just work.
///
/// Unfortunately, `long` have a different encoding than `int` when it is
/// 32 bits wide; the [`l`][`Encoding::Long`] encoding.
pub const C_LONG: Self = {
// TODO once `core::ffi::c_long` is in MSRV
// `mem::size_of::<c_long>() == 4`
//
// That would exactly match what `clang` does:
// https://github.com/llvm/llvm-project/blob/release/13.x/clang/lib/AST/ASTContext.cpp#L7245
if cfg!(any(target_pointer_width = "32", windows)) {
// @encode(long) = 'l'
Self::Long
} else {
// @encode(long) = 'q'
Self::LongLong
}
};
/// The encoding of [`c_ulong`](`std::os::raw::c_ulong`) on the current
/// target.
///
/// See [`Encoding::C_LONG`] for explanation.
pub const C_ULONG: Self = {
if cfg!(any(target_pointer_width = "32", windows)) {
// @encode(unsigned long) = 'L'
Self::ULong
} else {
// @encode(unsigned long) = 'Q'
Self::ULongLong
}
};
/// Check if one encoding is equivalent to another.
///
/// Currently, equivalence testing mostly requires that the encodings are
/// equal, except for:
/// - Any leading qualifiers that the encoding may have.
/// - Structs or unions behind multiple pointers are considered
/// equivalent, since Objective-C compilers strip this information to
/// avoid unnecessary nesting.
/// - Structs or unions with no fields/members are considered to represent
/// "opqaue" types, and will therefore be equivalent to all other
/// structs / unions.
///
/// The comparison may be changed in the future to e.g. ignore struct
/// names or similar changes that may be required because of limitations
/// in Objective-C compiler implementations.
///
/// For example, you should not rely on two equivalent encodings to have
/// the same size or ABI - that is provided on a best-effort basis.
pub fn equivalent_to(&self, other: &Self) -> bool {
compare_encodings(self, other, NestingLevel::new(), false)
}
/// Check if an encoding is equivalent to the given string representation.
///
/// See [`Encoding::equivalent_to`] for details about the meaning of
/// "equivalence".
pub fn equivalent_to_str(&self, s: &str) -> bool {
let mut parser = Parser::new(s);
parser.strip_leading_qualifiers();
if let Some(()) = parser.expect_encoding(self, NestingLevel::new()) {
// if the given encoding can be successfully removed from the
// start and an empty string remains, they were fully equivalent!
parser.is_empty()
} else {
false
}
}
/// Check if an encoding is equivalent to a boxed encoding.
///
/// See [`Encoding::equivalent_to`] for details about the meaning of
/// "equivalence".
pub fn equivalent_to_box(&self, other: &EncodingBox) -> bool {
compare_encodings(self, other, NestingLevel::new(), false)
}
}
/// Formats this [`Encoding`] in a similar way that the `@encode` directive
/// would ordinarily do.
///
/// You should not rely on the output of this to be stable across versions. It
/// may change if found to be required to be compatible with exisiting
/// Objective-C compilers.
impl fmt::Display for Encoding {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Helper::new(self).fmt(f, NestingLevel::new())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::static_str::{static_encoding_str_array, static_encoding_str_len};
use alloc::boxed::Box;
use alloc::string::ToString;
use alloc::vec;
use core::str::FromStr;
fn send_sync<T: Send + Sync>() {}
#[test]
fn test_send_sync() {
send_sync::<Encoding>();
}
#[test]
fn smoke() {
assert!(Encoding::Short.equivalent_to_str("s"));
}
#[test]
fn qualifiers() {
assert!(Encoding::Void.equivalent_to_str("v"));
assert!(Encoding::Void.equivalent_to_str("Vv"));
assert!(Encoding::String.equivalent_to_str("*"));
assert!(Encoding::String.equivalent_to_str("r*"));
}
macro_rules! assert_enc {
($(
fn $name:ident() {
$encoding:expr;
$(
~$equivalent_encoding:expr;
)*
$(
!$not_encoding:expr;
)*
$string:literal;
$(
~$equivalent_string:expr;
)*
$(
!$not_string:literal;
)*
}
)+) => {$(
#[test]
fn $name() {
const E: Encoding = $encoding;
// Check PartialEq
assert_eq!(E, E, "equal");
// Check Display
assert_eq!(E.to_string(), $string, "equal to string");
// Check encoding box
let boxed = EncodingBox::from_str($string).expect("parse");
assert_eq!(boxed.to_string(), $string, "parsed");
// Check equivalence comparisons
assert!(E.equivalent_to(&E), "equivalent self");
assert!(E.equivalent_to_str($string), "equivalent self string {}", $string);
assert!(E.equivalent_to_box(&boxed), "equivalent self boxed");
$(
assert!(E.equivalent_to(&$equivalent_encoding), "equivalent encoding {}", $equivalent_encoding);
assert!(E.equivalent_to_str(&$equivalent_encoding.to_string()), "equivalent encoding string");
let boxed = EncodingBox::from_str(&$equivalent_encoding.to_string()).expect("parse equivalent encoding");
assert!(E.equivalent_to_box(&boxed), "equivalent encoding boxed");
)*
$(
assert!(E.equivalent_to_str($equivalent_string), "equivalent string {}", $equivalent_string);
let boxed = EncodingBox::from_str($equivalent_string).expect("parse equivalent string");
assert!(E.equivalent_to_box(&boxed), "equivalent string boxed");
)*
// Negative checks
$(
assert_ne!(E, $not_encoding, "not equal");
assert!(!E.equivalent_to(&$not_encoding), "not equivalent encoding");
assert!(!E.equivalent_to_str(&$not_encoding.to_string()), "not equivalent encoding string");
let boxed = EncodingBox::from_str(&$not_encoding.to_string()).expect("parse not equivalent encoding");
assert!(!E.equivalent_to_box(&boxed), "not equivalent boxed");
)*
$(
assert!(!E.equivalent_to_str(&$not_string), "not equivalent string");
)*
// Check static str
const STATIC_ENCODING_DATA: [u8; static_encoding_str_len(&E, NestingLevel::new())] = static_encoding_str_array(&E, NestingLevel::new());
const STATIC_ENCODING_STR: &str = unsafe { core::str::from_utf8_unchecked(&STATIC_ENCODING_DATA) };
assert_eq!(STATIC_ENCODING_STR, $string, "static");
}
)+};
}
assert_enc! {
fn int() {
Encoding::Int;
!Encoding::Char;
"i";
}
fn char() {
Encoding::Char;
!Encoding::Int;
"c";
// Qualifiers
~"rc";
~"nc";
~"Nc";
~"oc";
~"Oc";
~"Rc";
~"Vc";
!"ri";
}
fn block() {
Encoding::Block;
"@?";
}
fn object() {
Encoding::Object;
!Encoding::Block;
"@";
~"@\"AnyClassName\"";
~"@\"\""; // Empty class name
!"@\"MyClassName";
!"@MyClassName\"";
!"@?";
}
fn unknown() {
Encoding::Unknown;
!Encoding::Block;
"?";
}
fn double() {
Encoding::Double;
"d";
}
fn bitfield() {
Encoding::BitField(4, None);
!Encoding::Int;
!Encoding::BitField(5, None);
!Encoding::BitField(4, Some(&(0, Encoding::Bool)));
"b4";
!"b4a";
!"b4c";
!"b4B";
!"b";
!"b-4";
!"b0B4";
}
fn bitfield_gnustep() {
Encoding::BitField(4, Some(&(16, Encoding::Bool)));
!Encoding::Int;
!Encoding::BitField(4, None);
!Encoding::BitField(5, Some(&(16, Encoding::Bool)));
!Encoding::BitField(4, Some(&(20, Encoding::Bool)));
!Encoding::BitField(4, Some(&(16, Encoding::Char)));
"b16B4";
!"b4";
!"b16B";
!"b20B4";
!"b16B5";
!"b16c4";
!"b4a";
!"b";
!"b-4";
}
fn atomic() {
Encoding::Atomic(&Encoding::Int);
!Encoding::Pointer(&Encoding::Int);
!Encoding::Atomic(&Encoding::Char);
!Encoding::Atomic(&Encoding::Atomic(&Encoding::Int));
"Ai";
}
fn atomic_string() {
Encoding::Atomic(&Encoding::String);
"A*";
}
fn pointer() {
Encoding::Pointer(&Encoding::Int);
!Encoding::Atomic(&Encoding::Int);
!Encoding::Pointer(&Encoding::Char);
!Encoding::Pointer(&Encoding::Pointer(&Encoding::Int));
"^i";
}
fn array() {
Encoding::Array(12, &Encoding::Int);
!Encoding::Int;
!Encoding::Array(11, &Encoding::Int);
!Encoding::Array(12, &Encoding::Char);
"[12i]";
!"[12i";
}
fn struct_() {
Encoding::Struct("SomeStruct", &[Encoding::Char, Encoding::Int]);
~Encoding::Struct("SomeStruct", &[]);
!Encoding::Union("SomeStruct", &[Encoding::Char, Encoding::Int]);
!Encoding::Int;
!Encoding::Struct("SomeStruct", &[Encoding::Int]);
!Encoding::Struct("SomeStruct", &[Encoding::Char, Encoding::Int, Encoding::Int]);
!Encoding::Struct("SomeStruct", &[Encoding::Int, Encoding::Char]);
!Encoding::Struct("AnotherName", &[Encoding::Char, Encoding::Int]);
"{SomeStruct=ci}";
~"{SomeStruct=}";
!"{SomeStruct}";
!"{SomeStruct=ic}";
!"{SomeStruct=malformed";
}
fn pointer_struct() {
Encoding::Pointer(&Encoding::Struct("SomeStruct", &[Encoding::Char, Encoding::Int]));
~Encoding::Pointer(&Encoding::Struct("SomeStruct", &[]));
!Encoding::Pointer(&Encoding::Struct("SomeStruct", &[Encoding::Int, Encoding::Char]));
!Encoding::Pointer(&Encoding::Struct("AnotherName", &[Encoding::Char, Encoding::Int]));
"^{SomeStruct=ci}";
~"^{SomeStruct=}";
!"^{SomeStruct}";
!"^{SomeStruct=ic}";
!"^{SomeStruct=malformed";
}
fn pointer_pointer_struct() {
Encoding::Pointer(&Encoding::Pointer(&Encoding::Struct("SomeStruct", &[Encoding::Char, Encoding::Int])));
~Encoding::Pointer(&Encoding::Pointer(&Encoding::Struct("SomeStruct", &[])));
~Encoding::Pointer(&Encoding::Pointer(&Encoding::Struct("SomeStruct", &[Encoding::Int, Encoding::Char])));
!Encoding::Pointer(&Encoding::Pointer(&Encoding::Struct("AnotherName", &[Encoding::Char, Encoding::Int])));
"^^{SomeStruct}";
!"^^{SomeStruct=}";
!"^^{SomeStruct=ci}";
!"^^{SomeStruct=ic}";
!"^^{AnotherName=ic}";
!"^^{SomeStruct=malformed";
}
fn atomic_struct() {
Encoding::Atomic(&Encoding::Struct("SomeStruct", &[Encoding::Char, Encoding::Int]));
~Encoding::Atomic(&Encoding::Struct("SomeStruct", &[]));
~Encoding::Atomic(&Encoding::Struct("SomeStruct", &[Encoding::Int, Encoding::Char]));
!Encoding::Atomic(&Encoding::Struct("AnotherName", &[Encoding::Char, Encoding::Int]));
"A{SomeStruct}";
!"A{SomeStruct=}";
!"A{SomeStruct=ci}";
!"A{SomeStruct=ic}";
!"A{SomeStruct=malformed";
}
fn empty_struct() {
Encoding::Struct("SomeStruct", &[]);
"{SomeStruct=}";
~"{SomeStruct=ci}";
!"{SomeStruct}";
}
fn union_() {
Encoding::Union("Onion", &[Encoding::Char, Encoding::Int]);
!Encoding::Struct("Onion", &[Encoding::Char, Encoding::Int]);
!Encoding::Int;
!Encoding::Union("Onion", &[Encoding::Int, Encoding::Char]);
!Encoding::Union("AnotherUnion", &[Encoding::Char, Encoding::Int]);
"(Onion=ci)";
!"(Onion=ci";
}
fn nested() {
Encoding::Struct(
"A",
&[
Encoding::Struct("B", &[Encoding::Int]),
Encoding::Pointer(&Encoding::Struct("C", &[Encoding::Double])),
Encoding::Char,
],
);
~Encoding::Struct(
"A",
&[
Encoding::Struct("B", &[Encoding::Int]),
Encoding::Pointer(&Encoding::Struct("C", &[])),
Encoding::Char,
],
);
"{A={B=i}^{C}c}";
!"{A={B=i}^{C=d}c}";
!"{A={B=i}^{C=i}c}";
!"{A={B=i}^{C=d}c";
}
fn nested_pointer() {
Encoding::Pointer(&Encoding::Struct(
"A",
&[
Encoding::Struct("B", &[Encoding::Int]),
Encoding::Pointer(&Encoding::Struct("C", &[Encoding::Double])),
],
));
"^{A={B=i}^{C}}";
!"^{A={B}^{C}}";
!"^{A={B=i}^{C=d}}";
}
fn various() {
Encoding::Struct(
"abc",
&[
Encoding::Pointer(&Encoding::Array(8, &Encoding::Bool)),
Encoding::Union("def", &[Encoding::Block]),
Encoding::Pointer(&Encoding::Pointer(&Encoding::BitField(255, None))),
Encoding::Char,
Encoding::Unknown,
]
);
"{abc=^[8B](def=@?)^^b255c?}";
~"{abc=}";
!"{abc}";
}
fn identifier() {
Encoding::Struct("_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789", &[]);
"{_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789=}";
}
// Regression test. The encoding of the `CGLContextObj` object changed
// between versions of macOS. As such, this is something that we must
// be prepared to handle.
fn cgl_context_obj() {
Encoding::Pointer(&Encoding::Struct("_CGLContextObject", &[]));
"^{_CGLContextObject=}";
~"^{_CGLContextObject=^{__GLIContextRec}{__GLIFunctionDispatchRec=^?^?^?^?^?}^{_CGLPrivateObject}^v}";
!"^{_CGLContextObject}";
!"^{SomeOtherStruct=}";
}
fn none() {
Encoding::None;
"";
!"?";
}
fn none_in_array() {
Encoding::Array(42, &Encoding::None);
!Encoding::Array(42, &Encoding::Unknown);
"[42]";
!"[42i]";
}
fn none_in_pointer() {
Encoding::Pointer(&Encoding::None);
!Encoding::Pointer(&Encoding::Unknown);
"^";
!"";
!"^i";
}
fn none_in_pointer_in_array() {
Encoding::Array(42, &Encoding::Pointer(&Encoding::None));
"[42^]";
}
}
#[test]
#[should_panic = "Struct name was not a valid identifier"]
fn struct_empty() {
let _ = Encoding::Struct("", &[]).to_string();
}
#[test]
#[should_panic = "Struct name was not a valid identifier"]
fn struct_unicode() {
let _ = Encoding::Struct("☃", &[Encoding::Char]).to_string();
}
#[test]
#[should_panic = "Union name was not a valid identifier"]
fn union_invalid_identifier() {
let _ = Encoding::Union("a-b", &[Encoding::Char]).equivalent_to_str("(☃=c)");
}
// Note: A raw `?` cannot happen in practice, since functions can only
// be accessed through pointers, and that will yield `^?`
#[test]
fn object_unknown_in_struct() {
let enc = Encoding::Struct("S", &[Encoding::Block, Encoding::Object, Encoding::Unknown]);
let s = "{S=@?@?}";
assert_eq!(&enc.to_string(), s);
let parsed = EncodingBox::from_str(s).unwrap();
let expected = EncodingBox::Struct(
"S".to_string(),
vec![EncodingBox::Block, EncodingBox::Block],
);
assert_eq!(parsed, expected);
assert!(!enc.equivalent_to_box(&expected));
}
// Similar to `?`, `` cannot be accurately represented inside pointers
// inside structs, and may be parsed incorrectly.
#[test]
fn none_in_struct() {
let enc = Encoding::Struct("?", &[Encoding::Pointer(&Encoding::None), Encoding::Int]);
let s = "{?=^i}";
assert_eq!(&enc.to_string(), s);
let parsed = EncodingBox::from_str(s).unwrap();
let expected = EncodingBox::Struct(
"?".to_string(),
vec![EncodingBox::Pointer(Box::new(EncodingBox::Int))],
);
assert_eq!(parsed, expected);
assert!(!enc.equivalent_to_box(&expected));
}
}