1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
use std::{
borrow::{Borrow, BorrowMut},
ffi::c_void,
};
use odbc_sys::{CDataType, NULL_DATA};
use crate::{
buffers::Indicator,
handles::{CData, CDataMut, HasDataType},
parameter::InputParameter,
DataType, OutputParameter,
};
/// Binds a byte array as Variadic sized binary data. It can not be used for columnar bulk fetches,
/// but if the buffer type is stack allocated it can be utilized in row wise bulk fetches.
///
/// Meaningful instantiations of this type are:
///
/// * [`self::VarBinarySlice`] - immutable borrowed parameter.
/// * [`self::VarBinarySliceMut`] - mutable borrowed input / output parameter
/// * [`self::VarBinaryArray`] - stack allocated owned input / output parameter
/// * [`self::VarBinaryBox`] - heap allocated owned input /output parameter
#[derive(Debug, Clone, Copy)]
pub struct VarBinary<B> {
/// Contains the value. Bytes must be valid up to the index indicated by `indicator`. If
/// `indicator` is longer than buffer the value has been truncated and all bytes are considered
/// part of the payload.
buffer: B,
/// Indicates the length of the value stored in `buffer`. Should indicator exceed the buffer
/// length the value stored in buffer is truncated, and holds actually `buffer.len()` valid
/// bytes.
indicator: isize,
}
/// Parameter type for owned, variable sized binary data.
///
/// We use `Box<[u8]>` rather than `Vec<u8>` as a buffer type since the indicator pointer already
/// has the role of telling us how many bytes in the buffer are part of the payload.
pub type VarBinaryBox = VarBinary<Box<[u8]>>;
impl VarBinaryBox {
/// Constructs a 'missing' value.
pub fn null() -> Self {
// Insert 0 in buffer to avoid binding as VARBINARY(0)
Self::from_buffer(Box::new([0]), Indicator::Null)
}
/// Create an instance from a `Vec`.
pub fn from_vec(val: Vec<u8>) -> Self {
let indicator = Indicator::Length(val.len());
let buffer = val.into_boxed_slice();
Self::from_buffer(buffer, indicator)
}
}
impl<B> VarBinary<B>
where
B: Borrow<[u8]>,
{
/// Creates a new instance from an existing buffer.
pub fn from_buffer(buffer: B, indicator: Indicator) -> Self {
Self {
buffer,
indicator: indicator.to_isize(),
}
}
/// Valid payload of the buffer returned as slice or `None` in case the indicator is
/// `NULL_DATA`.
pub fn as_bytes(&self) -> Option<&[u8]> {
let slice = self.buffer.borrow();
match self.indicator() {
Indicator::Null => None,
Indicator::NoTotal => Some(slice),
Indicator::Length(len) => {
if self.is_complete() {
Some(&slice[..len])
} else {
Some(slice)
}
}
}
}
/// Call this method to ensure that the entire field content did fit into the buffer. If you
/// retrieve a field using [`crate::CursorRow::get_data`], you can repeat the call until this
/// method is false to read all the data.
///
/// ```
/// use odbc_api::{CursorRow, parameter::VarBinaryArray, Error, handles::Statement};
///
/// fn process_large_binary<S: Statement>(
/// col_index: u16,
/// row: &mut CursorRow<S>
/// ) -> Result<(), Error>{
/// let mut buf = VarBinaryArray::<512>::NULL;
/// row.get_data(col_index, &mut buf)?;
/// while !buf.is_complete() {
/// // Process bytes in stream without allocation. We can assume repeated calls to
/// // get_data do not return `None` since it would have done so on the first call.
/// process_slice(buf.as_bytes().unwrap());
/// }
/// Ok(())
/// }
///
/// fn process_slice(text: &[u8]) { /*...*/}
///
/// ```
pub fn is_complete(&self) -> bool {
let slice = self.buffer.borrow();
match self.indicator() {
Indicator::Null => true,
Indicator::NoTotal => false,
Indicator::Length(len) => len <= slice.len(),
}
}
/// Read access to the underlying ODBC indicator. After data has been fetched the indicator
/// value is set to the length the buffer should have had to hold the entire value. It may also
/// be [`Indicator::Null`] to indicate `NULL` or [`Indicator::NoTotal`] which tells us the data
/// source does not know how big the buffer must be to hold the complete value.
/// [`Indicator::NoTotal`] implies that the content of the current buffer is valid up to its
/// maximum capacity.
pub fn indicator(&self) -> Indicator {
Indicator::from_isize(self.indicator)
}
}
impl<B> VarBinary<B>
where
B: Borrow<[u8]>,
{
/// Call this method to reset the indicator to a value which matches the length returned by the
/// [`Self::as_bytes`] method. This is useful if you want to insert values into the database
/// despite the fact, that they might have been truncated.
pub fn hide_truncation(&mut self) {
if !self.is_complete() {
self.indicator = self.buffer.borrow().len().try_into().unwrap();
}
}
}
unsafe impl<B> CData for VarBinary<B>
where
B: Borrow<[u8]>,
{
fn cdata_type(&self) -> CDataType {
CDataType::Binary
}
fn indicator_ptr(&self) -> *const isize {
&self.indicator as *const isize
}
fn value_ptr(&self) -> *const c_void {
self.buffer.borrow().as_ptr() as *const c_void
}
fn buffer_length(&self) -> isize {
// This is the maximum buffer length, but it is NOT the length of an instance of Self due to
// the missing size of the indicator value. As such the buffer length can not be used to
// correctly index a columnar buffer of Self.
self.buffer.borrow().len().try_into().unwrap()
}
}
impl<B> HasDataType for VarBinary<B>
where
B: Borrow<[u8]>,
{
fn data_type(&self) -> DataType {
DataType::Varbinary {
length: self.buffer.borrow().len(),
}
}
}
unsafe impl<B> CDataMut for VarBinary<B>
where
B: BorrowMut<[u8]>,
{
fn mut_indicator_ptr(&mut self) -> *mut isize {
&mut self.indicator as *mut isize
}
fn mut_value_ptr(&mut self) -> *mut c_void {
self.buffer.borrow_mut().as_mut_ptr() as *mut c_void
}
}
/// Binds a byte array as a variadic binary input parameter.
///
/// While a byte array can provide us with a pointer to the start of the array and the length of the
/// array itself, it can not provide us with a pointer to the length of the buffer. So to bind
/// byte slices (`&[u8]`) we need to store the length in a separate value.
///
/// This type is created if `into_parameter` of the `IntoParameter` trait is called on a `&[u8]`.
pub type VarBinarySlice<'a> = VarBinary<&'a [u8]>;
impl<'a> VarBinarySlice<'a> {
/// Indicates missing data
pub const NULL: Self = Self {
// Insert 0 in buffer to avoid binding as VARBINARY(0)
buffer: &[0],
indicator: NULL_DATA,
};
/// Constructs a new instance containing the bytes in the specified buffer.
pub fn new(value: &'a [u8]) -> Self {
Self::from_buffer(value, Indicator::Length(value.len()))
}
}
/// Wraps a slice so it can be used as an output parameter for binary data.
pub type VarBinarySliceMut<'a> = VarBinary<&'a mut [u8]>;
/// A stack allocated VARBINARY type.
///
/// Due to its memory layout this type can be bound either as a single parameter, or as a column of
/// a row-by-row output, but not be used in columnar parameter arrays or output buffers.
pub type VarBinaryArray<const LENGTH: usize> = VarBinary<[u8; LENGTH]>;
impl<const LENGTH: usize> VarBinaryArray<LENGTH> {
/// Indicates a missing value.
pub const NULL: Self = VarBinaryArray {
buffer: [0; LENGTH],
indicator: NULL_DATA,
};
/// Construct from a slice. If value is longer than `LENGTH` it will be truncated.
pub fn new(bytes: &[u8]) -> Self {
let indicator = bytes.len().try_into().unwrap();
let mut buffer = [0u8; LENGTH];
if bytes.len() > LENGTH {
buffer.copy_from_slice(&bytes[..LENGTH]);
} else {
buffer[..bytes.len()].copy_from_slice(bytes);
};
Self { buffer, indicator }
}
}
// We can't go all out and implement these traits for anything implementing Borrow and BorrowMut,
// because erroneous but still safe implementation of these traits could cause invalid memory access
// down the road. E.g. think about returning a different slice with a different length for borrow
// and borrow_mut.
unsafe impl InputParameter for VarBinarySlice<'_> {}
unsafe impl<const LENGTH: usize> OutputParameter for VarBinaryArray<LENGTH> {}
unsafe impl<const LENGTH: usize> InputParameter for VarBinaryArray<LENGTH> {}
unsafe impl<'a> OutputParameter for VarBinarySliceMut<'a> {}
unsafe impl<'a> InputParameter for VarBinarySliceMut<'a> {}
unsafe impl<'a> OutputParameter for VarBinaryBox {}
unsafe impl<'a> InputParameter for VarBinaryBox {}