1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
use std::{
    borrow::{Borrow, BorrowMut},
    ffi::c_void,
};

use odbc_sys::{CDataType, NULL_DATA};

use crate::{
    buffers::Indicator,
    handles::{CData, CDataMut, HasDataType},
    parameter::InputParameter,
    DataType, OutputParameter,
};

/// Binds a byte array as Variadic sized binary data. It can not be used for columnar bulk fetches,
/// but if the buffer type is stack allocated it can be utilized in row wise bulk fetches.
///
/// Meaningful instantiations of this type are:
///
/// * [`self::VarBinarySlice`] - immutable borrowed parameter.
/// * [`self::VarBinarySliceMut`] - mutable borrowed input / output parameter
/// * [`self::VarBinaryArray`] - stack allocated owned input / output parameter
/// * [`self::VarBinaryBox`] - heap allocated owned input /output parameter
#[derive(Debug, Clone, Copy)]
pub struct VarBinary<B> {
    /// Contains the value. Bytes must be valid up to the index indicated by `indicator`. If
    /// `indicator` is longer than buffer the value has been truncated and all bytes are considered
    /// part of the payload.
    buffer: B,
    /// Indicates the length of the value stored in `buffer`. Should indicator exceed the buffer
    /// length the value stored in buffer is truncated, and holds actually `buffer.len()` valid
    /// bytes.
    indicator: isize,
}

/// Parameter type for owned, variable sized binary data.
///
/// We use `Box<[u8]>` rather than `Vec<u8>` as a buffer type since the indicator pointer already
/// has the role of telling us how many bytes in the buffer are part of the payload.
pub type VarBinaryBox = VarBinary<Box<[u8]>>;

impl VarBinaryBox {
    /// Constructs a 'missing' value.
    pub fn null() -> Self {
        // Insert 0 in buffer to avoid binding as VARBINARY(0)
        Self::from_buffer(Box::new([0]), Indicator::Null)
    }

    /// Create an instance from a `Vec`.
    pub fn from_vec(val: Vec<u8>) -> Self {
        let indicator = Indicator::Length(val.len());
        let buffer = val.into_boxed_slice();
        Self::from_buffer(buffer, indicator)
    }
}

impl<B> VarBinary<B>
where
    B: Borrow<[u8]>,
{
    /// Creates a new instance from an existing buffer.
    pub fn from_buffer(buffer: B, indicator: Indicator) -> Self {
        Self {
            buffer,
            indicator: indicator.to_isize(),
        }
    }

    /// Valid payload of the buffer returned as slice or `None` in case the indicator is
    /// `NULL_DATA`.
    pub fn as_bytes(&self) -> Option<&[u8]> {
        let slice = self.buffer.borrow();
        match self.indicator() {
            Indicator::Null => None,
            Indicator::NoTotal => Some(slice),
            Indicator::Length(len) => {
                if self.is_complete() {
                    Some(&slice[..len])
                } else {
                    Some(slice)
                }
            }
        }
    }

    /// Call this method to ensure that the entire field content did fit into the buffer. If you
    /// retrieve a field using [`crate::CursorRow::get_data`], you can repeat the call until this
    /// method is false to read all the data.
    ///
    /// ```
    /// use odbc_api::{CursorRow, parameter::VarBinaryArray, Error, handles::Statement};
    ///
    /// fn process_large_binary<S: Statement>(
    ///     col_index: u16,
    ///     row: &mut CursorRow<S>
    /// ) -> Result<(), Error>{
    ///     let mut buf = VarBinaryArray::<512>::NULL;
    ///     row.get_data(col_index, &mut buf)?;
    ///     while !buf.is_complete() {
    ///         // Process bytes in stream without allocation. We can assume repeated calls to
    ///         // get_data do not return `None` since it would have done so on the first call.
    ///         process_slice(buf.as_bytes().unwrap());
    ///     }
    ///     Ok(())
    /// }
    ///
    /// fn process_slice(text: &[u8]) { /*...*/}
    ///
    /// ```
    pub fn is_complete(&self) -> bool {
        let slice = self.buffer.borrow();
        match self.indicator() {
            Indicator::Null => true,
            Indicator::NoTotal => false,
            Indicator::Length(len) => len <= slice.len(),
        }
    }

    /// Read access to the underlying ODBC indicator. After data has been fetched the indicator
    /// value is set to the length the buffer should have had to hold the entire value. It may also
    /// be [`Indicator::Null`] to indicate `NULL` or [`Indicator::NoTotal`] which tells us the data
    /// source does not know how big the buffer must be to hold the complete value.
    /// [`Indicator::NoTotal`] implies that the content of the current buffer is valid up to its
    /// maximum capacity.
    pub fn indicator(&self) -> Indicator {
        Indicator::from_isize(self.indicator)
    }
}

impl<B> VarBinary<B>
where
    B: Borrow<[u8]>,
{
    /// Call this method to reset the indicator to a value which matches the length returned by the
    /// [`Self::as_bytes`] method. This is useful if you want to insert values into the database
    /// despite the fact, that they might have been truncated.
    pub fn hide_truncation(&mut self) {
        if !self.is_complete() {
            self.indicator = self.buffer.borrow().len().try_into().unwrap();
        }
    }
}

unsafe impl<B> CData for VarBinary<B>
where
    B: Borrow<[u8]>,
{
    fn cdata_type(&self) -> CDataType {
        CDataType::Binary
    }

    fn indicator_ptr(&self) -> *const isize {
        &self.indicator as *const isize
    }

    fn value_ptr(&self) -> *const c_void {
        self.buffer.borrow().as_ptr() as *const c_void
    }

    fn buffer_length(&self) -> isize {
        // This is the maximum buffer length, but it is NOT the length of an instance of Self due to
        // the missing size of the indicator value. As such the buffer length can not be used to
        // correctly index a columnar buffer of Self.
        self.buffer.borrow().len().try_into().unwrap()
    }
}

impl<B> HasDataType for VarBinary<B>
where
    B: Borrow<[u8]>,
{
    fn data_type(&self) -> DataType {
        DataType::Varbinary {
            length: self.buffer.borrow().len(),
        }
    }
}

unsafe impl<B> CDataMut for VarBinary<B>
where
    B: BorrowMut<[u8]>,
{
    fn mut_indicator_ptr(&mut self) -> *mut isize {
        &mut self.indicator as *mut isize
    }

    fn mut_value_ptr(&mut self) -> *mut c_void {
        self.buffer.borrow_mut().as_mut_ptr() as *mut c_void
    }
}

/// Binds a byte array as a variadic binary input parameter.
///
/// While a byte array can provide us with a pointer to the start of the array and the length of the
/// array itself, it can not provide us with a pointer to the length of the buffer. So to bind
/// byte slices (`&[u8]`) we need to store the length in a separate value.
///
/// This type is created if `into_parameter` of the `IntoParameter` trait is called on a `&[u8]`.
pub type VarBinarySlice<'a> = VarBinary<&'a [u8]>;

impl<'a> VarBinarySlice<'a> {
    /// Indicates missing data
    pub const NULL: Self = Self {
        // Insert 0 in buffer to avoid binding as VARBINARY(0)
        buffer: &[0],
        indicator: NULL_DATA,
    };

    /// Constructs a new instance containing the bytes in the specified buffer.
    pub fn new(value: &'a [u8]) -> Self {
        Self::from_buffer(value, Indicator::Length(value.len()))
    }
}

/// Wraps a slice so it can be used as an output parameter for binary data.
pub type VarBinarySliceMut<'a> = VarBinary<&'a mut [u8]>;

/// A stack allocated VARBINARY type.
///
/// Due to its memory layout this type can be bound either as a single parameter, or as a column of
/// a row-by-row output, but not be used in columnar parameter arrays or output buffers.
pub type VarBinaryArray<const LENGTH: usize> = VarBinary<[u8; LENGTH]>;

impl<const LENGTH: usize> VarBinaryArray<LENGTH> {
    /// Indicates a missing value.
    pub const NULL: Self = VarBinaryArray {
        buffer: [0; LENGTH],
        indicator: NULL_DATA,
    };

    /// Construct from a slice. If value is longer than `LENGTH` it will be truncated.
    pub fn new(bytes: &[u8]) -> Self {
        let indicator = bytes.len().try_into().unwrap();
        let mut buffer = [0u8; LENGTH];
        if bytes.len() > LENGTH {
            buffer.copy_from_slice(&bytes[..LENGTH]);
        } else {
            buffer[..bytes.len()].copy_from_slice(bytes);
        };
        Self { buffer, indicator }
    }
}

// We can't go all out and implement these traits for anything implementing Borrow and BorrowMut,
// because erroneous but still safe implementation of these traits could cause invalid memory access
// down the road. E.g. think about returning a different slice with a different length for borrow
// and borrow_mut.

unsafe impl InputParameter for VarBinarySlice<'_> {}

unsafe impl<const LENGTH: usize> OutputParameter for VarBinaryArray<LENGTH> {}
unsafe impl<const LENGTH: usize> InputParameter for VarBinaryArray<LENGTH> {}

unsafe impl<'a> OutputParameter for VarBinarySliceMut<'a> {}
unsafe impl<'a> InputParameter for VarBinarySliceMut<'a> {}

unsafe impl<'a> OutputParameter for VarBinaryBox {}
unsafe impl<'a> InputParameter for VarBinaryBox {}