1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
use odbc_sys::HStmt;
use crate::{
borrow_mut_statement::BorrowMutStatement,
buffers::Indicator,
error::ExtendResult,
handles::{State, Statement},
parameter::{VarBinarySliceMut, VarCharSliceMut},
Error, OutputParameter, ResultSetMetadata,
};
use std::{cmp::max, thread::panicking};
/// Cursors are used to process and iterate the result sets returned by executing queries.
pub trait Cursor: ResultSetMetadata {
/// Provides access to the underlying statement handle.
///
/// # Safety
///
/// Assigning to this statement handle or binding buffers to it may invalidate the invariants
/// of safe wrapper types (i.e. [`crate::RowSetCursor`]). Some actions like closing the cursor
/// may just result in ODBC transition errors, others like binding columns may even cause actual
/// invalid memory access if not used with care.
unsafe fn stmt_mut(&mut self) -> &mut Self::Statement;
/// Advances the cursor to the next row in the result set.
///
/// While this method is very convenient due to the fact that the application does not have to
/// declare and bind specific buffers it is also in many situations extremely slow. Concrete
/// performance depends on the ODBC driver in question, but it is likely it performs a roundtrip
/// to the datasource for each individual row. It is also likely an extra conversion is
/// performed then requesting individual fields, since the C buffer type is not known to the
/// driver in advance. Consider binding a buffer to the cursor first using
/// [`Self::bind_buffer`].
fn next_row(&mut self) -> Result<Option<CursorRow<'_, Self::Statement>>, Error> {
let row_available = unsafe {
self.stmt_mut()
.fetch()
.map(|res| res.into_result(self.stmt_mut()))
.transpose()?
.is_some()
};
let ret = if row_available {
Some(CursorRow::new(unsafe { self.stmt_mut() }))
} else {
None
};
Ok(ret)
}
/// Binds this cursor to a buffer holding a row set.
fn bind_buffer<B>(self, row_set_buffer: B) -> Result<RowSetCursor<Self, B>, Error>
where
Self: Sized,
B: RowSetBuffer;
}
/// An individual row of an result set. See [`crate::Cursor::next_row`].
pub struct CursorRow<'c, S: ?Sized> {
statement: &'c mut S,
}
impl<'c, S: ?Sized> CursorRow<'c, S> {
fn new(statement: &'c mut S) -> Self {
CursorRow { statement }
}
}
impl<'c, S> CursorRow<'c, S>
where
S: Statement,
{
/// Fills a suitable target buffer with a field from the current row of the result set. This
/// method drains the data from the field. It can be called repeatedly to if not all the data
/// fit in the output buffer at once. It should not called repeatedly to fetch the same value
/// twice. Column index starts at `1`.
pub fn get_data(
&mut self,
col_or_param_num: u16,
target: &mut impl OutputParameter,
) -> Result<(), Error> {
self.statement
.get_data(col_or_param_num, target)
.into_result(self.statement)
}
/// Retrieves arbitrary large character data from the row and stores it in the buffer. Column
/// index starts at `1`.
///
/// # Return
///
/// `true` indicates that the value has not been `NULL` and the value has been placed in `buf`.
/// `false` indicates that the value is `NULL`. The buffer is cleared in that case.
pub fn get_text(&mut self, col_or_param_num: u16, buf: &mut Vec<u8>) -> Result<bool, Error> {
// Utilize all of the allocated buffer. Make sure buffer can at least hold the terminating
// zero.
buf.resize(max(1, buf.capacity()), 0);
// We repeatedly fetch data and add it to the buffer. The buffer length is therefore the
// accumulated value size. This variable keeps track of the number of bytes we added with
// the current call to get_data.
let mut fetch_size = buf.len();
let mut target = VarCharSliceMut::from_buffer(buf.as_mut_slice(), Indicator::Null);
// Fetch binary data into buffer.
self.get_data(col_or_param_num, &mut target)?;
let not_null = loop {
match target.indicator() {
// Value is `NULL`. We are done here.
Indicator::Null => {
buf.clear();
break false;
}
// We do not know how large the value is. Let's fetch the data with repeated calls
// to get_data.
Indicator::NoTotal => {
let old_len = buf.len();
// Use an exponential strategy for increasing buffer size. +1 For handling
// initial buffer size of 1.
buf.resize(old_len * 2, 0);
target =
VarCharSliceMut::from_buffer(&mut buf[(old_len - 1)..], Indicator::Null);
self.get_data(col_or_param_num, &mut target)?;
}
// We did get the complete value, including the terminating zero. Let's resize the
// buffer to match the retrieved value exactly (excluding terminating zero).
Indicator::Length(len) if len < fetch_size => {
// Since the indicator refers to value length without terminating zero, this
// also implicitly drops the terminating zero at the end of the buffer.
let shrink_by = fetch_size - len;
buf.resize(buf.len() - shrink_by, 0);
break true;
}
// We did not get all of the value in one go, but the data source has been friendly
// enough to tell us how much is missing.
Indicator::Length(len) => {
let still_missing = len - fetch_size + 1;
fetch_size = still_missing + 1;
let old_len = buf.len();
buf.resize(old_len + still_missing, 0);
target =
VarCharSliceMut::from_buffer(&mut buf[(old_len - 1)..], Indicator::Null);
self.get_data(col_or_param_num, &mut target)?;
}
}
};
Ok(not_null)
}
/// Retrieves arbitrary large binary data from the row and stores it in the buffer. Column index
/// starts at `1`.
///
/// # Return
///
/// `true` indicates that the value has not been `NULL` and the value has been placed in `buf`.
/// `false` indicates that the value is `NULL`. The buffer is cleared in that case.
pub fn get_binary(&mut self, col_or_param_num: u16, buf: &mut Vec<u8>) -> Result<bool, Error> {
// Utilize all of the allocated buffer. Make sure buffer can at least hold one element.
buf.resize(max(1, buf.capacity()), 0);
// We repeatedly fetch data and add it to the buffer. The buffer length is therefore the
// accumulated value size. This variable keeps track of the number of bytes we added with
// the current call to get_data.
let mut fetch_size = buf.len();
let mut target = VarBinarySliceMut::from_buffer(buf.as_mut_slice(), Indicator::Null);
// Fetch binary data into buffer.
self.get_data(col_or_param_num, &mut target)?;
let not_null = loop {
match target.indicator() {
// Value is `NULL`. We are done here.
Indicator::Null => {
buf.clear();
break false;
}
// We do not know how large the value is. Let's fetch the data with repeated calls
// to get_data.
Indicator::NoTotal => {
let old_len = buf.len();
// Use an exponential strategy for increasing buffer size.
buf.resize(old_len * 2, 0);
target = VarBinarySliceMut::from_buffer(&mut buf[old_len..], Indicator::Null);
self.get_data(col_or_param_num, &mut target)?;
}
// We did get the complete value, including the terminating zero. Let's resize the
// buffer to match the retrieved value exactly (excluding terminating zero).
Indicator::Length(len) if len <= fetch_size => {
let shrink_by = fetch_size - len;
buf.resize(buf.len() - shrink_by, 0);
break true;
}
// We did not get all of the value in one go, but the data source has been friendly
// enough to tell us how much is missing.
Indicator::Length(len) => {
let still_missing = len - fetch_size;
fetch_size = still_missing;
let old_len = buf.len();
buf.resize(old_len + still_missing, 0);
target = VarBinarySliceMut::from_buffer(&mut buf[old_len..], Indicator::Null);
self.get_data(col_or_param_num, &mut target)?;
}
}
};
Ok(not_null)
}
}
/// Cursors are used to process and iterate the result sets returned by executing queries. Created
/// by either a prepared query or direct execution. Usually utilized through the [`crate::Cursor`]
/// trait.
pub struct CursorImpl<Stmt: BorrowMutStatement> {
statement: Stmt,
}
impl<'o, S> Drop for CursorImpl<S>
where
S: BorrowMutStatement,
{
fn drop(&mut self) {
let stmt = self.statement.borrow_mut();
if let Err(e) = stmt.close_cursor().into_result(stmt) {
// Avoid panicking, if we already have a panic. We don't want to mask the original
// error.
if !panicking() {
panic!("Unexpected error closing cursor: {:?}", e)
}
}
}
}
impl<S> ResultSetMetadata for CursorImpl<S>
where
S: BorrowMutStatement,
{
type Statement = S::Statement;
fn stmt_ref(&self) -> &Self::Statement {
self.statement.borrow()
}
}
impl<S> Cursor for CursorImpl<S>
where
S: BorrowMutStatement,
{
unsafe fn stmt_mut(&mut self) -> &mut Self::Statement {
self.statement.borrow_mut()
}
fn bind_buffer<B>(mut self, mut row_set_buffer: B) -> Result<RowSetCursor<Self, B>, Error>
where
B: RowSetBuffer,
{
let stmt = self.statement.borrow_mut();
unsafe {
stmt.set_row_bind_type(row_set_buffer.bind_type())
.into_result(stmt)?;
let size = row_set_buffer.row_array_size();
stmt.set_row_array_size(size)
.into_result(stmt)
// SAP anywhere has been seen to return with an "invalid attribute" error instead of
// a success with "option value changed" info. Let us map invalid attributes during
// setting row set array size to something more precise.
.provide_context_for_diagnostic(|record, function| {
if record.state == State::INVALID_ATTRIBUTE_VALUE {
Error::InvalidRowArraySize { record, size }
} else {
Error::Diagnostics { record, function }
}
})?;
stmt.set_num_rows_fetched(Some(row_set_buffer.mut_num_fetch_rows()))
.into_result(stmt)?;
row_set_buffer.bind_to_cursor(&mut self)?;
}
Ok(RowSetCursor::new(row_set_buffer, self))
}
}
impl<S> CursorImpl<S>
where
S: BorrowMutStatement,
{
/// Users of this library are encouraged not to call this constructor directly but rather invoke
/// [`crate::Connection::execute`] or [`crate::Prepared::execute`] to get a cursor and utilize
/// it using the [`crate::Cursor`] trait. This method is pubilc so users with an understanding
/// of the raw ODBC C-API have a way to create a cursor, after they left the safety rails of the
/// Rust type System, in order to implement a use case not covered yet, by the safe abstractions
/// within this crate.
///
/// # Safety
///
/// `statement` must be in Cursor state, for the invariants of this type to hold.
pub unsafe fn new(statement: S) -> Self {
Self { statement }
}
pub(crate) fn as_sys(&self) -> HStmt {
self.statement.borrow().as_sys()
}
}
/// A Row set buffer binds row, or column wise buffers to a cursor in order to fill them with row
/// sets with each call to fetch.
///
/// # Safety
///
/// Implementers of this trait must ensure that every pointer bound in `bind_to_cursor` stays valid
/// even if an instance is moved in memory. Bound members should therefore be likely references
/// themselves. To bind stack allocated buffers it is recommended to implement this trait on the
/// reference type instead.
pub unsafe trait RowSetBuffer {
/// Declares the bind type of the Row set buffer. `0` Means a columnar binding is used. Any non
/// zero number is interpreted as the size of a single row in a row wise binding style.
fn bind_type(&self) -> usize;
/// The batch size for bulk cursors, if retrieving many rows at once.
fn row_array_size(&self) -> usize;
/// Mutable reference to the number of fetched rows.
///
/// # Safety
///
/// Implementations of this method must take care that the returned referenced stays valid, even
/// if `self` should be moved.
fn mut_num_fetch_rows(&mut self) -> &mut usize;
/// Binds the buffer either column or row wise to the cursor.
///
/// # Safety
///
/// It's the implementations responsibility to ensure that all bound buffers are valid until
/// unbound or the statement handle is deleted.
unsafe fn bind_to_cursor(&mut self, cursor: &mut impl Cursor) -> Result<(), Error>;
}
unsafe impl<T: RowSetBuffer> RowSetBuffer for &mut T {
fn bind_type(&self) -> usize {
(**self).bind_type()
}
fn row_array_size(&self) -> usize {
(**self).row_array_size()
}
fn mut_num_fetch_rows(&mut self) -> &mut usize {
(*self).mut_num_fetch_rows()
}
unsafe fn bind_to_cursor(&mut self, cursor: &mut impl Cursor) -> Result<(), Error> {
(*self).bind_to_cursor(cursor)
}
}
/// A row set cursor iterates in blocks over row sets, filling them in buffers, instead of iterating
/// the result set row by row. This is usually much faster.
pub struct RowSetCursor<C: Cursor, B> {
buffer: B,
cursor: C,
}
impl<C, B> RowSetCursor<C, B>
where
C: Cursor,
{
fn new(buffer: B, cursor: C) -> Self {
Self { buffer, cursor }
}
/// Fills the bound buffer with the next row set.
///
/// # Return
///
/// `None` if the result set is empty and all row sets have been extracted. `Some` with a
/// reference to the internal buffer otherwise.
pub fn fetch(&mut self) -> Result<Option<&B>, Error> {
unsafe {
if let Some(sql_result) = self.cursor.stmt_mut().fetch() {
sql_result
.into_result(self.cursor.stmt_mut())
// Oracles ODBC driver does not support 64Bit integers. Furthermore, it does not
// tell the it to the user than binding parameters, but rather now then we fetch
// results. The error code retruned is `HY004` rather then `HY003` which should
// be used to indicate invalid buffer types.
.provide_context_for_diagnostic(|record, function| {
if record.state == State::INVALID_SQL_DATA_TYPE {
Error::OracleOdbcDriverDoesNotSupport64Bit(record)
} else {
Error::Diagnostics { record, function }
}
})?;
Ok(Some(&self.buffer))
} else {
Ok(None)
}
}
}
}
impl<C, B> Drop for RowSetCursor<C, B>
where
C: Cursor,
{
fn drop(&mut self) {
unsafe {
let stmt = self.cursor.stmt_mut();
if let Err(e) = stmt
.unbind_cols()
.into_result(stmt)
.and_then(|()| stmt.set_num_rows_fetched(None).into_result(stmt))
{
// Avoid panicking, if we already have a panic. We don't want to mask the original
// error.
if !panicking() {
panic!("Unexpected error unbinding columns: {:?}", e)
}
}
}
}
}