1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
use odbc_sys::HStmt;

use crate::{
    borrow_mut_statement::BorrowMutStatement,
    buffers::Indicator,
    error::ExtendResult,
    handles::{State, Statement},
    parameter::{VarBinarySliceMut, VarCharSliceMut},
    Error, OutputParameter, ResultSetMetadata,
};

use std::{cmp::max, thread::panicking};

/// Cursors are used to process and iterate the result sets returned by executing queries.
pub trait Cursor: ResultSetMetadata {
    /// Provides access to the underlying statement handle.
    ///
    /// # Safety
    ///
    /// Assigning to this statement handle or binding buffers to it may invalidate the invariants
    /// of safe wrapper types (i.e. [`crate::RowSetCursor`]). Some actions like closing the cursor
    /// may just result in ODBC transition errors, others like binding columns may even cause actual
    /// invalid memory access if not used with care.
    unsafe fn stmt_mut(&mut self) -> &mut Self::Statement;

    /// Advances the cursor to the next row in the result set.
    ///
    /// While this method is very convenient due to the fact that the application does not have to
    /// declare and bind specific buffers it is also in many situations extremely slow. Concrete
    /// performance depends on the ODBC driver in question, but it is likely it performs a roundtrip
    /// to the datasource for each individual row. It is also likely an extra conversion is
    /// performed then requesting individual fields, since the C buffer type is not known to the
    /// driver in advance. Consider binding a buffer to the cursor first using
    /// [`Self::bind_buffer`].
    fn next_row(&mut self) -> Result<Option<CursorRow<'_, Self::Statement>>, Error> {
        let row_available = unsafe {
            self.stmt_mut()
                .fetch()
                .map(|res| res.into_result(self.stmt_mut()))
                .transpose()?
                .is_some()
        };
        let ret = if row_available {
            Some(CursorRow::new(unsafe { self.stmt_mut() }))
        } else {
            None
        };
        Ok(ret)
    }

    /// Binds this cursor to a buffer holding a row set.
    fn bind_buffer<B>(self, row_set_buffer: B) -> Result<RowSetCursor<Self, B>, Error>
    where
        Self: Sized,
        B: RowSetBuffer;
}

/// An individual row of an result set. See [`crate::Cursor::next_row`].
pub struct CursorRow<'c, S: ?Sized> {
    statement: &'c mut S,
}

impl<'c, S: ?Sized> CursorRow<'c, S> {
    fn new(statement: &'c mut S) -> Self {
        CursorRow { statement }
    }
}

impl<'c, S> CursorRow<'c, S>
where
    S: Statement,
{
    /// Fills a suitable target buffer with a field from the current row of the result set. This
    /// method drains the data from the field. It can be called repeatedly to if not all the data
    /// fit in the output buffer at once. It should not called repeatedly to fetch the same value
    /// twice. Column index starts at `1`.
    pub fn get_data(
        &mut self,
        col_or_param_num: u16,
        target: &mut impl OutputParameter,
    ) -> Result<(), Error> {
        self.statement
            .get_data(col_or_param_num, target)
            .into_result(self.statement)
    }

    /// Retrieves arbitrary large character data from the row and stores it in the buffer. Column
    /// index starts at `1`.
    ///
    /// # Return
    ///
    /// `true` indicates that the value has not been `NULL` and the value has been placed in `buf`.
    /// `false` indicates that the value is `NULL`. The buffer is cleared in that case.
    pub fn get_text(&mut self, col_or_param_num: u16, buf: &mut Vec<u8>) -> Result<bool, Error> {
        // Utilize all of the allocated buffer. Make sure buffer can at least hold the terminating
        // zero.
        buf.resize(max(1, buf.capacity()), 0);
        // We repeatedly fetch data and add it to the buffer. The buffer length is therefore the
        // accumulated value size. This variable keeps track of the number of bytes we added with
        // the current call to get_data.
        let mut fetch_size = buf.len();
        let mut target = VarCharSliceMut::from_buffer(buf.as_mut_slice(), Indicator::Null);
        // Fetch binary data into buffer.
        self.get_data(col_or_param_num, &mut target)?;
        let not_null = loop {
            match target.indicator() {
                // Value is `NULL`. We are done here.
                Indicator::Null => {
                    buf.clear();
                    break false;
                }
                // We do not know how large the value is. Let's fetch the data with repeated calls
                // to get_data.
                Indicator::NoTotal => {
                    let old_len = buf.len();
                    // Use an exponential strategy for increasing buffer size. +1 For handling
                    // initial buffer size of 1.
                    buf.resize(old_len * 2, 0);
                    target =
                        VarCharSliceMut::from_buffer(&mut buf[(old_len - 1)..], Indicator::Null);
                    self.get_data(col_or_param_num, &mut target)?;
                }
                // We did get the complete value, including the terminating zero. Let's resize the
                // buffer to match the retrieved value exactly (excluding terminating zero).
                Indicator::Length(len) if len < fetch_size => {
                    // Since the indicator refers to value length without terminating zero, this
                    // also implicitly drops the terminating zero at the end of the buffer.
                    let shrink_by = fetch_size - len;
                    buf.resize(buf.len() - shrink_by, 0);
                    break true;
                }
                // We did not get all of the value in one go, but the data source has been friendly
                // enough to tell us how much is missing.
                Indicator::Length(len) => {
                    let still_missing = len - fetch_size + 1;
                    fetch_size = still_missing + 1;
                    let old_len = buf.len();
                    buf.resize(old_len + still_missing, 0);
                    target =
                        VarCharSliceMut::from_buffer(&mut buf[(old_len - 1)..], Indicator::Null);
                    self.get_data(col_or_param_num, &mut target)?;
                }
            }
        };
        Ok(not_null)
    }

    /// Retrieves arbitrary large binary data from the row and stores it in the buffer. Column index
    /// starts at `1`.
    ///
    /// # Return
    ///
    /// `true` indicates that the value has not been `NULL` and the value has been placed in `buf`.
    /// `false` indicates that the value is `NULL`. The buffer is cleared in that case.
    pub fn get_binary(&mut self, col_or_param_num: u16, buf: &mut Vec<u8>) -> Result<bool, Error> {
        // Utilize all of the allocated buffer. Make sure buffer can at least hold one element.
        buf.resize(max(1, buf.capacity()), 0);
        // We repeatedly fetch data and add it to the buffer. The buffer length is therefore the
        // accumulated value size. This variable keeps track of the number of bytes we added with
        // the current call to get_data.
        let mut fetch_size = buf.len();
        let mut target = VarBinarySliceMut::from_buffer(buf.as_mut_slice(), Indicator::Null);
        // Fetch binary data into buffer.
        self.get_data(col_or_param_num, &mut target)?;
        let not_null = loop {
            match target.indicator() {
                // Value is `NULL`. We are done here.
                Indicator::Null => {
                    buf.clear();
                    break false;
                }
                // We do not know how large the value is. Let's fetch the data with repeated calls
                // to get_data.
                Indicator::NoTotal => {
                    let old_len = buf.len();
                    // Use an exponential strategy for increasing buffer size.
                    buf.resize(old_len * 2, 0);
                    target = VarBinarySliceMut::from_buffer(&mut buf[old_len..], Indicator::Null);
                    self.get_data(col_or_param_num, &mut target)?;
                }
                // We did get the complete value, including the terminating zero. Let's resize the
                // buffer to match the retrieved value exactly (excluding terminating zero).
                Indicator::Length(len) if len <= fetch_size => {
                    let shrink_by = fetch_size - len;
                    buf.resize(buf.len() - shrink_by, 0);
                    break true;
                }
                // We did not get all of the value in one go, but the data source has been friendly
                // enough to tell us how much is missing.
                Indicator::Length(len) => {
                    let still_missing = len - fetch_size;
                    fetch_size = still_missing;
                    let old_len = buf.len();
                    buf.resize(old_len + still_missing, 0);
                    target = VarBinarySliceMut::from_buffer(&mut buf[old_len..], Indicator::Null);
                    self.get_data(col_or_param_num, &mut target)?;
                }
            }
        };
        Ok(not_null)
    }
}

/// Cursors are used to process and iterate the result sets returned by executing queries. Created
/// by either a prepared query or direct execution. Usually utilized through the [`crate::Cursor`]
/// trait.
pub struct CursorImpl<Stmt: BorrowMutStatement> {
    statement: Stmt,
}

impl<'o, S> Drop for CursorImpl<S>
where
    S: BorrowMutStatement,
{
    fn drop(&mut self) {
        let stmt = self.statement.borrow_mut();
        if let Err(e) = stmt.close_cursor().into_result(stmt) {
            // Avoid panicking, if we already have a panic. We don't want to mask the original
            // error.
            if !panicking() {
                panic!("Unexpected error closing cursor: {:?}", e)
            }
        }
    }
}

impl<S> ResultSetMetadata for CursorImpl<S>
where
    S: BorrowMutStatement,
{
    type Statement = S::Statement;

    fn stmt_ref(&self) -> &Self::Statement {
        self.statement.borrow()
    }
}

impl<S> Cursor for CursorImpl<S>
where
    S: BorrowMutStatement,
{
    unsafe fn stmt_mut(&mut self) -> &mut Self::Statement {
        self.statement.borrow_mut()
    }

    fn bind_buffer<B>(mut self, mut row_set_buffer: B) -> Result<RowSetCursor<Self, B>, Error>
    where
        B: RowSetBuffer,
    {
        let stmt = self.statement.borrow_mut();
        unsafe {
            stmt.set_row_bind_type(row_set_buffer.bind_type())
                .into_result(stmt)?;
            let size = row_set_buffer.row_array_size();
            stmt.set_row_array_size(size)
                .into_result(stmt)
                // SAP anywhere has been seen to return with an "invalid attribute" error instead of
                // a success with "option value changed" info. Let us map invalid attributes during
                // setting row set array size to something more precise.
                .provide_context_for_diagnostic(|record, function| {
                    if record.state == State::INVALID_ATTRIBUTE_VALUE {
                        Error::InvalidRowArraySize { record, size }
                    } else {
                        Error::Diagnostics { record, function }
                    }
                })?;
            stmt.set_num_rows_fetched(Some(row_set_buffer.mut_num_fetch_rows()))
                .into_result(stmt)?;
            row_set_buffer.bind_to_cursor(&mut self)?;
        }
        Ok(RowSetCursor::new(row_set_buffer, self))
    }
}

impl<S> CursorImpl<S>
where
    S: BorrowMutStatement,
{
    /// Users of this library are encouraged not to call this constructor directly but rather invoke
    /// [`crate::Connection::execute`] or [`crate::Prepared::execute`] to get a cursor and utilize
    /// it using the [`crate::Cursor`] trait. This method is pubilc so users with an understanding
    /// of the raw ODBC C-API have a way to create a cursor, after they left the safety rails of the
    /// Rust type System, in order to implement a use case not covered yet, by the safe abstractions
    /// within this crate.
    ///
    /// # Safety
    ///
    /// `statement` must be in Cursor state, for the invariants of this type to hold.
    pub unsafe fn new(statement: S) -> Self {
        Self { statement }
    }

    pub(crate) fn as_sys(&self) -> HStmt {
        self.statement.borrow().as_sys()
    }
}

/// A Row set buffer binds row, or column wise buffers to a cursor in order to fill them with row
/// sets with each call to fetch.
///
/// # Safety
///
/// Implementers of this trait must ensure that every pointer bound in `bind_to_cursor` stays valid
/// even if an instance is moved in memory. Bound members should therefore be likely references
/// themselves. To bind stack allocated buffers it is recommended to implement this trait on the
/// reference type instead.
pub unsafe trait RowSetBuffer {
    /// Declares the bind type of the Row set buffer. `0` Means a columnar binding is used. Any non
    /// zero number is interpreted as the size of a single row in a row wise binding style.
    fn bind_type(&self) -> usize;

    /// The batch size for bulk cursors, if retrieving many rows at once.
    fn row_array_size(&self) -> usize;

    /// Mutable reference to the number of fetched rows.
    ///
    /// # Safety
    ///
    /// Implementations of this method must take care that the returned referenced stays valid, even
    /// if `self` should be moved.
    fn mut_num_fetch_rows(&mut self) -> &mut usize;

    /// Binds the buffer either column or row wise to the cursor.
    ///
    /// # Safety
    ///
    /// It's the implementations responsibility to ensure that all bound buffers are valid until
    /// unbound or the statement handle is deleted.
    unsafe fn bind_to_cursor(&mut self, cursor: &mut impl Cursor) -> Result<(), Error>;
}

unsafe impl<T: RowSetBuffer> RowSetBuffer for &mut T {
    fn bind_type(&self) -> usize {
        (**self).bind_type()
    }

    fn row_array_size(&self) -> usize {
        (**self).row_array_size()
    }

    fn mut_num_fetch_rows(&mut self) -> &mut usize {
        (*self).mut_num_fetch_rows()
    }

    unsafe fn bind_to_cursor(&mut self, cursor: &mut impl Cursor) -> Result<(), Error> {
        (*self).bind_to_cursor(cursor)
    }
}

/// A row set cursor iterates in blocks over row sets, filling them in buffers, instead of iterating
/// the result set row by row. This is usually much faster.
pub struct RowSetCursor<C: Cursor, B> {
    buffer: B,
    cursor: C,
}

impl<C, B> RowSetCursor<C, B>
where
    C: Cursor,
{
    fn new(buffer: B, cursor: C) -> Self {
        Self { buffer, cursor }
    }

    /// Fills the bound buffer with the next row set.
    ///
    /// # Return
    ///
    /// `None` if the result set is empty and all row sets have been extracted. `Some` with a
    /// reference to the internal buffer otherwise.
    pub fn fetch(&mut self) -> Result<Option<&B>, Error> {
        unsafe {
            if let Some(sql_result) = self.cursor.stmt_mut().fetch() {
                sql_result
                    .into_result(self.cursor.stmt_mut())
                    // Oracles ODBC driver does not support 64Bit integers. Furthermore, it does not
                    // tell the it to the user than binding parameters, but rather now then we fetch
                    // results. The error code retruned is `HY004` rather then `HY003` which should
                    // be used to indicate invalid buffer types.
                    .provide_context_for_diagnostic(|record, function| {
                        if record.state == State::INVALID_SQL_DATA_TYPE {
                            Error::OracleOdbcDriverDoesNotSupport64Bit(record)
                        } else {
                            Error::Diagnostics { record, function }
                        }
                    })?;
                Ok(Some(&self.buffer))
            } else {
                Ok(None)
            }
        }
    }
}

impl<C, B> Drop for RowSetCursor<C, B>
where
    C: Cursor,
{
    fn drop(&mut self) {
        unsafe {
            let stmt = self.cursor.stmt_mut();
            if let Err(e) = stmt
                .unbind_cols()
                .into_result(stmt)
                .and_then(|()| stmt.set_num_rows_fetched(None).into_result(stmt))
            {
                // Avoid panicking, if we already have a panic. We don't want to mask the original
                // error.
                if !panicking() {
                    panic!("Unexpected error unbinding columns: {:?}", e)
                }
            }
        }
    }
}