1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
use std::{
    borrow::{Borrow, BorrowMut},
    ffi::c_void,
};

use odbc_sys::{CDataType, NULL_DATA};

use crate::{
    buffers::Indicator,
    handles::{CData, CDataMut, HasDataType},
    parameter::InputParameter,
    DataType, OutputParameter,
};

/// Binds a byte array as Variadic sized character data. It can not be used for columnar bulk
/// fetches, but if the buffer type is stack allocated it can be utilized in row wise bulk fetches.
///
/// Meaningful instantiations of this type are:
///
/// * [`self::VarCharSlice`] - immutable borrowed parameter.
/// * [`self::VarCharSliceMut`] - mutable borrowed input / output parameter
/// * [`self::VarCharArray`] - stack allocated owned input / output parameter
/// * [`self::VarCharBox`] - heap allocated owned input /output parameter
#[derive(Debug, Clone, Copy)]
pub struct VarChar<B> {
    /// Contains the value. Characters must be valid up to the index indicated by `indicator`. If
    /// `indicator` is longer than buffer, the last element in buffer must be a terminating zero,
    /// which is not regarded as being part of the payload itself.
    buffer: B,
    /// Indicates the length of the value stored in `buffer`. Should indicator exceed the buffer
    /// length the value stored in buffer is truncated, and holds actually `buffer.len() - 1` valid
    /// characters. The last element of the buffer being the terminating zero. If indicator is
    /// exactly the buffer length, the value should be considered valid up to the last element,
    /// unless the value is `\0`. In that case we assume `\0` to be a terminating zero left over
    /// from truncation, rather than the last character of the string.
    indicator: isize,
}

/// Parameter type for owned, variable sized character data.
///
/// We use `Box<[u8]>` rather than `Vec<u8>` as a buffer type since the indicator pointer already
/// has the role of telling us how many bytes in the buffer are part of the payload.
pub type VarCharBox = VarChar<Box<[u8]>>;

impl VarCharBox {
    /// Constructs a 'missing' value.
    pub fn null() -> Self {
        // We do not want to use the empty buffer (`&[]`) here. It would be bound as `VARCHAR(0)`
        // which caused errors with Microsoft Access and older versions of the Microsoft SQL Server
        // ODBC driver.
        Self::from_buffer(Box::new([0]), Indicator::Null)
    }

    /// Create an owned parameter containing the character data from the passed string.
    pub fn from_string(val: String) -> Self {
        Self::from_vec(val.into_bytes())
    }

    /// Create a VarChar box from a `Vec`.
    pub fn from_vec(val: Vec<u8>) -> Self {
        let indicator = Indicator::Length(val.len());
        let buffer = val.into_boxed_slice();
        Self::from_buffer(buffer, indicator)
    }
}

impl<B> VarChar<B>
where
    B: Borrow<[u8]>,
{
    /// Creates a new instance from an existing buffer. Should the indicator be `NoTotal` or indicate
    /// a length longer than buffer, the last element in the buffer must be nul (`\0`).
    pub fn from_buffer(buffer: B, indicator: Indicator) -> Self {
        let buf = buffer.borrow();
        match indicator {
            Indicator::Null => (),
            Indicator::NoTotal => {
                if buf.is_empty() || *buf.last().unwrap() != 0 {
                    panic!("Truncated value must be terminated with zero.")
                }
            }
            Indicator::Length(len) => {
                if len > buf.len() && (buf.is_empty() || *buf.last().unwrap() != 0) {
                    panic!("Truncated value must be terminated with zero.")
                }
            }
        };
        Self {
            buffer,
            indicator: indicator.to_isize(),
        }
    }

    /// Returns the binary representation of the string, excluding the terminating zero or `None` in
    /// case the indicator is `NULL_DATA`.
    pub fn as_bytes(&self) -> Option<&[u8]> {
        let slice = self.buffer.borrow();
        match self.indicator() {
            Indicator::Null => None,
            Indicator::NoTotal => Some(&slice[..(slice.len() - 1)]),
            Indicator::Length(len) => {
                if self.is_complete() {
                    Some(&slice[..len])
                } else {
                    Some(&slice[..(slice.len() - 1)])
                }
            }
        }
    }

    /// Call this method to ensure that the entire field content did fit into the buffer. If you
    /// retrieve a field using [`crate::CursorRow::get_data`], you can repeat the call until this
    /// method is false to read all the data.
    ///
    /// ```
    /// use odbc_api::{CursorRow, parameter::VarCharArray, Error, handles::Statement};
    ///
    /// fn process_large_text<S: Statement>(
    ///     col_index: u16,
    ///     row: &mut CursorRow<S>
    /// ) -> Result<(), Error>{
    ///     let mut buf = VarCharArray::<512>::NULL;
    ///     row.get_data(col_index, &mut buf)?;
    ///     while !buf.is_complete() {
    ///         // Process bytes in stream without allocation. We can assume repeated calls to
    ///         // get_data do not return `None` since it would have done so on the first call.
    ///         process_text_slice(buf.as_bytes().unwrap());
    ///     }
    ///     Ok(())
    /// }
    ///
    /// fn process_text_slice(text: &[u8]) { /*...*/}
    ///
    /// ```
    pub fn is_complete(&self) -> bool {
        let slice = self.buffer.borrow();
        match self.indicator() {
            Indicator::Null => true,
            Indicator::NoTotal => false,
            Indicator::Length(len) => {
                len < slice.len() || slice.is_empty() || *slice.last().unwrap() != 0
            }
        }
    }

    /// Read access to the underlying ODBC indicator. After data has been fetched the indicator
    /// value is set to the length the buffer should have had, excluding the terminating zero. It
    /// may also be `NULL_DATA` to indicate `NULL` or `NO_TOTAL` which tells us the data source
    /// does not know how big the buffer must be to hold the complete value. `NO_TOTAL` implies that
    /// the content of the current buffer is valid up to its maximum capacity.
    pub fn indicator(&self) -> Indicator {
        Indicator::from_isize(self.indicator)
    }
}

impl<B> VarChar<B>
where
    B: Borrow<[u8]>,
{
    /// Call this method to reset the indicator to a value which matches the length returned by the
    /// [`Self::as_bytes`] method. This is useful if you want to insert values into the database
    /// despite the fact, that they might have been truncated. Otherwise the behaviour of databases
    /// in this situation is driver specific. Some drivers insert up to the terminating zero, others
    /// detect the truncation and throw an error.
    pub fn hide_truncation(&mut self) {
        if !self.is_complete() {
            self.indicator = (self.buffer.borrow().len() - 1).try_into().unwrap();
        }
    }
}

unsafe impl<B> CData for VarChar<B>
where
    B: Borrow<[u8]>,
{
    fn cdata_type(&self) -> CDataType {
        CDataType::Char
    }

    fn indicator_ptr(&self) -> *const isize {
        &self.indicator as *const isize
    }

    fn value_ptr(&self) -> *const c_void {
        self.buffer.borrow().as_ptr() as *const c_void
    }

    fn buffer_length(&self) -> isize {
        // This is the maximum buffer length, but it is NOT the length of an instance of Self due to
        // the missing size of the indicator value. As such the buffer length can not be used to
        // correctly index a columnar buffer of Self.
        self.buffer.borrow().len().try_into().unwrap()
    }
}

impl<B> HasDataType for VarChar<B>
where
    B: Borrow<[u8]>,
{
    fn data_type(&self) -> DataType {
        // Since we might use as an input buffer, we report the full buffer length in the type and
        // do not deduct 1 for the terminating zero.
        DataType::Varchar {
            length: self.buffer.borrow().len(),
        }
    }
}

unsafe impl<B> CDataMut for VarChar<B>
where
    B: BorrowMut<[u8]>,
{
    fn mut_indicator_ptr(&mut self) -> *mut isize {
        &mut self.indicator as *mut isize
    }

    fn mut_value_ptr(&mut self) -> *mut c_void {
        self.buffer.borrow_mut().as_mut_ptr() as *mut c_void
    }
}

/// Binds a byte array as a VarChar input parameter.
///
/// While a byte array can provide us with a pointer to the start of the array and the length of the
/// array itself, it can not provide us with a pointer to the length of the buffer. So to bind
/// strings which are not zero terminated we need to store the length in a separate value.
///
/// This type is created if `into_parameter` of the `IntoParameter` trait is called on a `&str`.
///
/// # Example
///
/// ```no_run
/// use odbc_api::{Environment, IntoParameter};
///
/// let env = Environment::new()?;
///
/// let mut conn = env.connect("YourDatabase", "SA", "My@Test@Password1")?;
/// if let Some(cursor) = conn.execute(
///     "SELECT year FROM Birthdays WHERE name=?;",
///     &"Bernd".into_parameter())?
/// {
///     // Use cursor to process query results.
/// };
/// # Ok::<(), odbc_api::Error>(())
/// ```
pub type VarCharSlice<'a> = VarChar<&'a [u8]>;

impl<'a> VarCharSlice<'a> {
    /// Indicates missing data
    pub const NULL: Self = Self {
        // We do not want to use the empty buffer (`&[]`) here. It would be bound as `VARCHAR(0)`
        // which caused errors with Microsoft Access and older versions of the Microsoft SQL Server
        // ODBC driver.
        buffer: &[0],
        indicator: NULL_DATA,
    };

    /// Constructs a new VarChar containing the text in the specified buffer.
    ///
    /// Caveat: This constructor is going to create a truncated value in case the input slice ends
    /// with `nul`. Should you want to insert an actual string those payload ends with `nul` into
    /// the database you need a buffer one byte longer than the string. You can instantiate such a
    /// value using [`Self::from_buffer`].
    pub fn new(value: &'a [u8]) -> Self {
        Self::from_buffer(value, Indicator::Length(value.len()))
    }
}

/// Wraps a slice so it can be used as an output parameter for character data.
pub type VarCharSliceMut<'a> = VarChar<&'a mut [u8]>;

/// A stack allocated VARCHAR type.
///
/// Due to its memory layout this type can be bound either as a single parameter, or as a column of
/// a row-by-row output, but not be used in columnar parameter arrays or output buffers.
pub type VarCharArray<const LENGTH: usize> = VarChar<[u8; LENGTH]>;

impl<const LENGTH: usize> VarCharArray<LENGTH> {
    /// Indicates a missing value.
    pub const NULL: Self = VarCharArray {
        buffer: [0; LENGTH],
        indicator: NULL_DATA,
    };

    /// Construct from a slice. If value is longer than `LENGTH` it will be truncated. In that case
    /// the last byte will be set to `0`.
    pub fn new(text: &[u8]) -> Self {
        let indicator = text.len().try_into().unwrap();
        let mut buffer = [0u8; LENGTH];
        if text.len() > LENGTH {
            buffer.copy_from_slice(&text[..LENGTH]);
            *buffer.last_mut().unwrap() = 0;
        } else {
            buffer[..text.len()].copy_from_slice(text);
        };
        Self { buffer, indicator }
    }
}

// We can't go all out and implement these traits for anything implementing Borrow and BorrowMut,
// because erroneous but still safe implementation of these traits could cause invalid memory access
// down the road. E.g. think about returning a different slice with a different length for borrow
// and borrow_mut.

unsafe impl InputParameter for VarCharSlice<'_> {}

unsafe impl<const LENGTH: usize> OutputParameter for VarCharArray<LENGTH> {}
unsafe impl<const LENGTH: usize> InputParameter for VarCharArray<LENGTH> {}

unsafe impl<'a> OutputParameter for VarCharSliceMut<'a> {}
unsafe impl<'a> InputParameter for VarCharSliceMut<'a> {}

unsafe impl<'a> OutputParameter for VarCharBox {}
unsafe impl<'a> InputParameter for VarCharBox {}