odbc_api/cursor/
block_cursor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
use std::{mem::MaybeUninit, ptr, thread::panicking};

use crate::{
    handles::{AsStatementRef, Statement as _},
    Error,
};

use super::{error_handling_for_fetch, unbind_buffer_from_cursor, Cursor, RowSetBuffer};

/// In order to save on network overhead, it is recommended to use block cursors instead of fetching
/// values individually. This can greatly reduce the time applications need to fetch data. You can
/// create a block cursor by binding preallocated memory to a cursor using [`Cursor::bind_buffer`].
/// A block cursor saves on a lot of IO overhead by fetching an entire set of rows (called *rowset*)
/// at once into the buffer bound to it. Reusing the same buffer for each rowset also saves on
/// allocations. A challange with using block cursors might be database schemas with columns there
/// individual fields can be very large. In these cases developers can choose to:
///
/// 1. Reserve less memory for each individual field than the schema indicates and deciding on a
///    sensible upper bound themselves. This risks truncation of values though, if they are larger
///    than the upper bound. Using [`BlockCursor::fetch_with_truncation_check`] instead of
///    [`Cursor::next_row`] your application can detect these truncations. This is usually the best
///    choice, since individual fields in a table rarely actually take up several GiB of memory.
/// 2. Calculate the number of rows dynamically based on the maximum expected row size.
///    [`crate::buffers::BufferDesc::bytes_per_row`], can be helpful with this task.
/// 3. Not use block cursors and fetch rows slowly with high IO overhead. Calling
///    [`CursorRow::get_data`] and [`CursorRow::get_text`] to fetch large individual values.
///
/// See: <https://learn.microsoft.com/en-us/sql/odbc/reference/develop-app/block-cursors>
pub struct BlockCursor<C: AsStatementRef, B> {
    buffer: B,
    cursor: C,
}

impl<C, B> BlockCursor<C, B>
where
    C: Cursor,
{
    pub(crate) fn new(buffer: B, cursor: C) -> Self {
        Self { buffer, cursor }
    }

    /// Fills the bound buffer with the next row set.
    ///
    /// # Return
    ///
    /// `None` if the result set is empty and all row sets have been extracted. `Some` with a
    /// reference to the internal buffer otherwise.
    ///
    /// ```
    /// use odbc_api::{buffers::TextRowSet, Cursor};
    ///
    /// fn print_all_values(mut cursor: impl Cursor) {
    ///     let batch_size = 100;
    ///     let max_string_len = 4000;
    ///     let buffer = TextRowSet::for_cursor(batch_size, &mut cursor, Some(4000)).unwrap();
    ///     let mut cursor = cursor.bind_buffer(buffer).unwrap();
    ///     // Iterate over batches
    ///     while let Some(batch) = cursor.fetch().unwrap() {
    ///         // ... print values in batch ...
    ///     }
    /// }
    /// ```
    pub fn fetch(&mut self) -> Result<Option<&B>, Error>
    where
        B: RowSetBuffer,
    {
        self.fetch_with_truncation_check(false)
    }

    /// Fills the bound buffer with the next row set. Should `error_for_truncation` be `true`and any
    /// diagnostic indicate truncation of a value an error is returned.
    ///
    /// # Return
    ///
    /// `None` if the result set is empty and all row sets have been extracted. `Some` with a
    /// reference to the internal buffer otherwise.
    ///
    /// Call this method to find out wether there are any truncated values in the batch, without
    /// inspecting all its rows and columns.
    ///
    /// ```
    /// use odbc_api::{buffers::TextRowSet, Cursor};
    ///
    /// fn print_all_values(mut cursor: impl Cursor) {
    ///     let batch_size = 100;
    ///     let max_string_len = 4000;
    ///     let buffer = TextRowSet::for_cursor(batch_size, &mut cursor, Some(4000)).unwrap();
    ///     let mut cursor = cursor.bind_buffer(buffer).unwrap();
    ///     // Iterate over batches
    ///     while let Some(batch) = cursor.fetch_with_truncation_check(true).unwrap() {
    ///         // ... print values in batch ...
    ///     }
    /// }
    /// ```
    pub fn fetch_with_truncation_check(
        &mut self,
        error_for_truncation: bool,
    ) -> Result<Option<&B>, Error>
    where
        B: RowSetBuffer,
    {
        let mut stmt = self.cursor.as_stmt_ref();
        unsafe {
            let result = stmt.fetch();
            let has_row =
                error_handling_for_fetch(result, stmt, &self.buffer, error_for_truncation)?;
            Ok(has_row.then_some(&self.buffer))
        }
    }

    /// Unbinds the buffer from the underlying statement handle. Potential usecases for this
    /// function include.
    ///
    /// 1. Binding a different buffer to the "same" cursor after letting it point to the next result
    ///    set obtained with [Cursor::more_results`].
    /// 2. Reusing the same buffer with a different statement.
    pub fn unbind(self) -> Result<(C, B), Error> {
        // In this method we want to deconstruct self and move cursor out of it. We need to
        // negotiate with the compiler a little bit though, since BlockCursor does implement `Drop`.

        // We want to move `cursor` out of self, which would make self partially uninitialized.
        let dont_drop_me = MaybeUninit::new(self);
        let self_ptr = dont_drop_me.as_ptr();

        // Safety: We know `dont_drop_me` is valid at this point so reading the ptr is okay
        let mut cursor = unsafe { ptr::read(&(*self_ptr).cursor) };
        let buffer = unsafe { ptr::read(&(*self_ptr).buffer) };

        // Now that we have cursor out of block cursor, we need to unbind the buffer.
        unbind_buffer_from_cursor(&mut cursor)?;

        Ok((cursor, buffer))
    }
}

impl<C, B> BlockCursor<C, B>
where
    B: RowSetBuffer,
    C: AsStatementRef,
{
    /// Maximum amount of rows fetched from the database in the next call to fetch.
    pub fn row_array_size(&self) -> usize {
        self.buffer.row_array_size()
    }
}

impl<C, B> Drop for BlockCursor<C, B>
where
    C: AsStatementRef,
{
    fn drop(&mut self) {
        if let Err(e) = unbind_buffer_from_cursor(&mut self.cursor) {
            // Avoid panicking, if we already have a panic. We don't want to mask the original
            // error.
            if !panicking() {
                panic!("Unexpected error unbinding columns: {e:?}")
            }
        }
    }
}