odbc_api/buffers/columnar.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
use std::{
collections::HashSet,
num::NonZeroUsize,
str::{from_utf8, Utf8Error},
};
use crate::{
columnar_bulk_inserter::BoundInputSlice,
cursor::TruncationInfo,
fixed_sized::Pod,
handles::{CDataMut, Statement, StatementRef},
parameter::WithDataType,
result_set_metadata::utf8_display_sizes,
Error, ResultSetMetadata, RowSetBuffer,
};
use super::{Indicator, TextColumn};
impl<C: ColumnBuffer> ColumnarBuffer<C> {
/// Create a new instance from columns with unique indicies. Capacity of the buffer will be the
/// minimum capacity of the columns. The constructed buffer is always empty (i.e. the number of
/// valid rows is considered to be zero).
///
/// You do not want to call this constructor directly unless you want to provide your own buffer
/// implentation. Most users of this crate may want to use the constructors like
/// [`crate::buffers::ColumnarAnyBuffer::from_descs`] or
/// [`crate::buffers::TextRowSet::from_max_str_lens`] instead.
pub fn new(columns: Vec<(u16, C)>) -> Self {
// Assert capacity
let capacity = columns
.iter()
.map(|(_, col)| col.capacity())
.min()
.unwrap_or(0);
// Assert uniqueness of indices
let mut indices = HashSet::new();
if columns
.iter()
.any(move |&(col_index, _)| !indices.insert(col_index))
{
panic!("Column indices must be unique.")
}
unsafe { Self::new_unchecked(capacity, columns) }
}
/// # Safety
///
/// * Indices must be unique
/// * Columns all must have enough `capacity`.
pub unsafe fn new_unchecked(capacity: usize, columns: Vec<(u16, C)>) -> Self {
ColumnarBuffer {
num_rows: Box::new(0),
row_capacity: capacity,
columns,
}
}
/// Number of valid rows in the buffer.
pub fn num_rows(&self) -> usize {
*self.num_rows
}
/// Return the number of columns in the row set.
pub fn num_cols(&self) -> usize {
self.columns.len()
}
/// Use this method to gain read access to the actual column data.
///
/// # Parameters
///
/// * `buffer_index`: Please note that the buffer index is not identical to the ODBC column
/// index. For one it is zero based. It also indexes the buffer bound, and not the columns of
/// the output result set. This is important, because not every column needs to be bound. Some
/// columns may simply be ignored. That being said, if every column of the output is bound in
/// the buffer, in the same order in which they are enumerated in the result set, the
/// relationship between column index and buffer index is `buffer_index = column_index - 1`.
pub fn column(&self, buffer_index: usize) -> C::View<'_> {
self.columns[buffer_index].1.view(*self.num_rows)
}
}
unsafe impl<C> RowSetBuffer for ColumnarBuffer<C>
where
C: ColumnBuffer,
{
fn bind_type(&self) -> usize {
0 // Specify columnar binding
}
fn row_array_size(&self) -> usize {
self.row_capacity
}
fn mut_num_fetch_rows(&mut self) -> &mut usize {
self.num_rows.as_mut()
}
unsafe fn bind_colmuns_to_cursor(&mut self, mut cursor: StatementRef<'_>) -> Result<(), Error> {
for (col_number, column) in &mut self.columns {
cursor.bind_col(*col_number, column).into_result(&cursor)?;
}
Ok(())
}
fn find_truncation(&self) -> Option<TruncationInfo> {
self.columns
.iter()
.enumerate()
.find_map(|(buffer_index, (_col_index, col_buffer))| {
col_buffer
.has_truncated_values(*self.num_rows)
.map(|indicator| TruncationInfo {
indicator: indicator.length(),
buffer_index,
})
})
}
}
/// A columnar buffer intended to be bound with [crate::Cursor::bind_buffer] in order to obtain
/// results from a cursor.
///
/// Binds to the result set column wise. This is usually helpful in dataengineering or data sciense
/// tasks. This buffer type can be used in situations there the schema of the queried data is known
/// at compile time, as well as for generic applications which do work with wide range of different
/// data.
///
/// # Example: Fetching results column wise with `ColumnarBuffer`.
///
/// Consider querying a table with two columns `year` and `name`.
///
/// ```no_run
/// use odbc_api::{
/// Environment, Cursor, ConnectionOptions,
/// buffers::{AnySlice, BufferDesc, Item, ColumnarAnyBuffer},
/// };
///
/// let env = Environment::new()?;
///
/// let batch_size = 1000; // Maximum number of rows in each row set
/// let buffer_description = [
/// // We know year to be a Nullable SMALLINT
/// BufferDesc::I16 { nullable: true },
/// // and name to be a required VARCHAR
/// BufferDesc::Text { max_str_len: 255 },
/// ];
///
/// /// Creates a columnar buffer fitting the buffer description with the capacity of `batch_size`.
/// let mut buffer = ColumnarAnyBuffer::from_descs(batch_size, buffer_description);
///
/// let mut conn = env.connect(
/// "YourDatabase", "SA", "My@Test@Password1",
/// ConnectionOptions::default(),
/// )?;
/// if let Some(cursor) = conn.execute("SELECT year, name FROM Birthdays;", ())? {
/// // Bind buffer to cursor. We bind the buffer as a mutable reference here, which makes it
/// // easier to reuse for other queries, but we could have taken ownership.
/// let mut row_set_cursor = cursor.bind_buffer(&mut buffer)?;
/// // Loop over row sets
/// while let Some(row_set) = row_set_cursor.fetch()? {
/// // Process years in row set
/// let year_col = row_set.column(0);
/// for year in i16::as_nullable_slice(year_col)
/// .expect("Year column buffer expected to be nullable Int")
/// {
/// // Iterate over `Option<i16>` with it ..
/// }
/// // Process names in row set
/// let name_col = row_set.column(1);
/// for name in name_col
/// .as_text_view()
/// .expect("Name column buffer expected to be text")
/// .iter()
/// {
/// // Iterate over `Option<&CStr> ..
/// }
/// }
/// }
/// # Ok::<(), odbc_api::Error>(())
/// ```
///
/// This second examples changes two things, we do not know the schema in advance and use the
/// SQL DataType to determine the best fit for the buffers. Also we want to do everything in a
/// function and return a `Cursor` with an already bound buffer. This approach is best if you have
/// few and very long query, so the overhead of allocating buffers is negligible and you want to
/// have an easier time with the borrow checker.
///
/// ```no_run
/// use odbc_api::{
/// Connection, BlockCursor, Error, Cursor, Nullability, ResultSetMetadata,
/// buffers::{ AnyBuffer, BufferDesc, ColumnarAnyBuffer, ColumnarBuffer }
/// };
///
/// fn get_birthdays<'a>(conn: &'a mut Connection)
/// -> Result<BlockCursor<impl Cursor + 'a, ColumnarAnyBuffer>, Error>
/// {
/// let mut cursor = conn.execute("SELECT year, name FROM Birthdays;", ())?.unwrap();
/// let mut column_description = Default::default();
/// let buffer_description : Vec<_> = (0..cursor.num_result_cols()?).map(|index| {
/// cursor.describe_col(index as u16 + 1, &mut column_description)?;
/// let nullable = matches!(
/// column_description.nullability,
/// Nullability::Unknown | Nullability::Nullable
/// );
/// let desc = BufferDesc::from_data_type(
/// column_description.data_type,
/// nullable
/// ).unwrap_or(BufferDesc::Text{ max_str_len: 255 });
/// Ok(desc)
/// }).collect::<Result<_, Error>>()?;
///
/// // Row set size of 5000 rows.
/// let buffer = ColumnarAnyBuffer::from_descs(5000, buffer_description);
/// // Bind buffer and take ownership over it.
/// cursor.bind_buffer(buffer)
/// }
/// ```
pub struct ColumnarBuffer<C> {
/// A mutable pointer to num_rows_fetched is passed to the C-API. It is used to write back the
/// number of fetched rows. `num_rows` is heap allocated, so the pointer is not invalidated,
/// even if the `ColumnarBuffer` instance is moved in memory.
num_rows: Box<usize>,
/// aka: batch size, row array size
row_capacity: usize,
/// Column index and bound buffer
columns: Vec<(u16, C)>,
}
/// A buffer for a single column intended to be used together with [`ColumnarBuffer`].
///
/// # Safety
///
/// Views must not allow access to unintialized / invalid rows.
pub unsafe trait ColumnBuffer: CDataMut {
/// Immutable view on the column data. Used in safe abstractions. User must not be able to
/// access uninitialized or invalid memory of the buffer through this interface.
type View<'a>
where
Self: 'a;
/// Num rows may not exceed the actual amount of valid num_rows filled by the ODBC API. The
/// column buffer does not know how many elements were in the last row group, and therefore can
/// not guarantee the accessed element to be valid and in a defined state. It also can not panic
/// on accessing an undefined element.
fn view(&self, valid_rows: usize) -> Self::View<'_>;
/// Fills the column with the default representation of values, between `from` and `to` index.
fn fill_default(&mut self, from: usize, to: usize);
/// Current capacity of the column
fn capacity(&self) -> usize;
/// `Some` if any value is truncated in the range [0, num_rows).
///
/// After fetching data we may want to know if any value has been truncated due to the buffer
/// not being able to hold elements of that size. This method checks the indicator buffer
/// element wise.
fn has_truncated_values(&self, num_rows: usize) -> Option<Indicator>;
}
unsafe impl<T> ColumnBuffer for WithDataType<T>
where
T: ColumnBuffer,
{
type View<'a> = T::View<'a> where T: 'a;
fn view(&self, valid_rows: usize) -> T::View<'_> {
self.value.view(valid_rows)
}
fn fill_default(&mut self, from: usize, to: usize) {
self.value.fill_default(from, to)
}
fn capacity(&self) -> usize {
self.value.capacity()
}
fn has_truncated_values(&self, num_rows: usize) -> Option<Indicator> {
self.value.has_truncated_values(num_rows)
}
}
unsafe impl<'a, T> BoundInputSlice<'a> for WithDataType<T>
where
T: BoundInputSlice<'a>,
{
type SliceMut = T::SliceMut;
unsafe fn as_view_mut(
&'a mut self,
parameter_index: u16,
stmt: StatementRef<'a>,
) -> Self::SliceMut {
self.value.as_view_mut(parameter_index, stmt)
}
}
/// This row set binds a string buffer to each column, which is large enough to hold the maximum
/// length string representation for each element in the row set at once.
///
/// # Example
///
/// ```no_run
/// //! A program executing a query and printing the result as csv to standard out. Requires
/// //! `anyhow` and `csv` crate.
///
/// use anyhow::Error;
/// use odbc_api::{buffers::TextRowSet, Cursor, Environment, ConnectionOptions, ResultSetMetadata};
/// use std::{
/// ffi::CStr,
/// io::{stdout, Write},
/// path::PathBuf,
/// };
///
/// /// Maximum number of rows fetched with one row set. Fetching batches of rows is usually much
/// /// faster than fetching individual rows.
/// const BATCH_SIZE: usize = 5000;
///
/// fn main() -> Result<(), Error> {
/// // Write csv to standard out
/// let out = stdout();
/// let mut writer = csv::Writer::from_writer(out);
///
/// // We know this is going to be the only ODBC environment in the entire process, so this is
/// // safe.
/// let environment = unsafe { Environment::new() }?;
///
/// // Connect using a DSN. Alternatively we could have used a connection string
/// let mut connection = environment.connect(
/// "DataSourceName",
/// "Username",
/// "Password",
/// ConnectionOptions::default(),
/// )?;
///
/// // Execute a one of query without any parameters.
/// match connection.execute("SELECT * FROM TableName", ())? {
/// Some(mut cursor) => {
/// // Write the column names to stdout
/// let mut headline : Vec<String> = cursor.column_names()?.collect::<Result<_,_>>()?;
/// writer.write_record(headline)?;
///
/// // Use schema in cursor to initialize a text buffer large enough to hold the largest
/// // possible strings for each column up to an upper limit of 4KiB
/// let mut buffers = TextRowSet::for_cursor(BATCH_SIZE, &mut cursor, Some(4096))?;
/// // Bind the buffer to the cursor. It is now being filled with every call to fetch.
/// let mut row_set_cursor = cursor.bind_buffer(&mut buffers)?;
///
/// // Iterate over batches
/// while let Some(batch) = row_set_cursor.fetch()? {
/// // Within a batch, iterate over every row
/// for row_index in 0..batch.num_rows() {
/// // Within a row iterate over every column
/// let record = (0..batch.num_cols()).map(|col_index| {
/// batch
/// .at(col_index, row_index)
/// .unwrap_or(&[])
/// });
/// // Writes row as csv
/// writer.write_record(record)?;
/// }
/// }
/// }
/// None => {
/// eprintln!(
/// "Query came back empty. No output has been created."
/// );
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub type TextRowSet = ColumnarBuffer<TextColumn<u8>>;
impl TextRowSet {
/// The resulting text buffer is not in any way tied to the cursor, other than that its buffer
/// sizes a tailor fitted to result set the cursor is iterating over.
///
/// This method performs fallible buffer allocations, if no upper bound is set, so you may see
/// a speedup, by setting an upper bound using `max_str_limit`.
///
///
/// # Parameters
///
/// * `batch_size`: The maximum number of rows the buffer is able to hold.
/// * `cursor`: Used to query the display size for each column of the row set. For character
/// data the length in characters is multiplied by 4 in order to have enough space for 4 byte
/// utf-8 characters. This is a pessimization for some data sources (e.g. SQLite 3) which do
/// interpret the size of a `VARCHAR(5)` column as 5 bytes rather than 5 characters.
/// * `max_str_limit`: Some queries make it hard to estimate a sensible upper bound and
/// sometimes drivers are just not that good at it. This argument allows you to specify an
/// upper bound for the length of character data. Any size reported by the driver is capped to
/// this value. In case the upper bound can not inferred by the metadata reported by the
/// driver the element size is set to this upper bound, too.
pub fn for_cursor(
batch_size: usize,
cursor: &mut impl ResultSetMetadata,
max_str_limit: Option<usize>,
) -> Result<TextRowSet, Error> {
let buffers = utf8_display_sizes(cursor)?
.enumerate()
.map(|(buffer_index, reported_len)| {
let buffer_index = buffer_index as u16;
let col_index = buffer_index + 1;
let max_str_len = reported_len?;
let buffer = if let Some(upper_bound) = max_str_limit {
let max_str_len = max_str_len
.map(NonZeroUsize::get)
.unwrap_or(upper_bound)
.min(upper_bound);
TextColumn::new(batch_size, max_str_len)
} else {
let max_str_len = max_str_len.map(NonZeroUsize::get).ok_or(
Error::TooLargeColumnBufferSize {
buffer_index,
num_elements: batch_size,
element_size: usize::MAX,
},
)?;
TextColumn::try_new(batch_size, max_str_len).map_err(|source| {
Error::TooLargeColumnBufferSize {
buffer_index,
num_elements: source.num_elements,
element_size: source.element_size,
}
})?
};
Ok::<_, Error>((col_index, buffer))
})
.collect::<Result<_, _>>()?;
Ok(TextRowSet {
row_capacity: batch_size,
num_rows: Box::new(0),
columns: buffers,
})
}
/// Creates a text buffer large enough to hold `batch_size` rows with one column for each item
/// `max_str_lengths` of respective size.
pub fn from_max_str_lens(
row_capacity: usize,
max_str_lengths: impl IntoIterator<Item = usize>,
) -> Result<Self, Error> {
let buffers = max_str_lengths
.into_iter()
.enumerate()
.map(|(index, max_str_len)| {
Ok::<_, Error>((
(index + 1).try_into().unwrap(),
TextColumn::try_new(row_capacity, max_str_len)
.map_err(|source| source.add_context(index.try_into().unwrap()))?,
))
})
.collect::<Result<_, _>>()?;
Ok(TextRowSet {
row_capacity,
num_rows: Box::new(0),
columns: buffers,
})
}
/// Access the element at the specified position in the row set.
pub fn at(&self, buffer_index: usize, row_index: usize) -> Option<&[u8]> {
assert!(row_index < *self.num_rows);
self.columns[buffer_index].1.value_at(row_index)
}
/// Access the element at the specified position in the row set.
pub fn at_as_str(&self, col_index: usize, row_index: usize) -> Result<Option<&str>, Utf8Error> {
self.at(col_index, row_index).map(from_utf8).transpose()
}
/// Indicator value at the specified position. Useful to detect truncation of data.
///
/// # Example
///
/// ```
/// use odbc_api::buffers::{Indicator, TextRowSet};
///
/// fn is_truncated(buffer: &TextRowSet, col_index: usize, row_index: usize) -> bool {
/// match buffer.indicator_at(col_index, row_index) {
/// // There is no value, therefore there is no value not fitting in the column buffer.
/// Indicator::Null => false,
/// // The value did not fit into the column buffer, we do not even know, by how much.
/// Indicator::NoTotal => true,
/// Indicator::Length(total_length) => {
/// // If the maximum string length is shorter than the values total length, the
/// // has been truncated to fit into the buffer.
/// buffer.max_len(col_index) < total_length
/// }
/// }
/// }
/// ```
pub fn indicator_at(&self, buf_index: usize, row_index: usize) -> Indicator {
assert!(row_index < *self.num_rows);
self.columns[buf_index].1.indicator_at(row_index)
}
/// Maximum length in bytes of elements in a column.
pub fn max_len(&self, buf_index: usize) -> usize {
self.columns[buf_index].1.max_len()
}
}
unsafe impl<T> ColumnBuffer for Vec<T>
where
T: Pod,
{
type View<'a> = &'a [T];
fn view(&self, valid_rows: usize) -> &[T] {
&self[..valid_rows]
}
fn fill_default(&mut self, from: usize, to: usize) {
for item in &mut self[from..to] {
*item = Default::default();
}
}
fn capacity(&self) -> usize {
self.len()
}
fn has_truncated_values(&self, _num_rows: usize) -> Option<Indicator> {
None
}
}
#[cfg(test)]
mod tests {
use crate::buffers::{BufferDesc, ColumnarAnyBuffer};
#[test]
#[should_panic(expected = "Column indices must be unique.")]
fn assert_unique_column_indices() {
let bd = BufferDesc::I32 { nullable: false };
ColumnarAnyBuffer::from_descs_and_indices(1, [(1, bd), (2, bd), (1, bd)].iter().cloned());
}
}