odbc_api/buffers/
text_column.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
use crate::{
    columnar_bulk_inserter::BoundInputSlice,
    error::TooLargeBufferSize,
    handles::{CData, CDataMut, HasDataType, Statement, StatementRef},
    DataType, Error,
};

use super::{ColumnBuffer, Indicator};

use log::debug;
use odbc_sys::{CDataType, NULL_DATA};
use std::{cmp::min, ffi::c_void, mem::size_of, num::NonZeroUsize, panic};
use widestring::U16Str;

/// A column buffer for character data. The actual encoding used may depend on your system locale.
pub type CharColumn = TextColumn<u8>;

/// This buffer uses wide characters which implies UTF-16 encoding. UTF-8 encoding is preferable for
/// most applications, but contrary to its sibling [`crate::buffers::CharColumn`] this buffer types
/// implied encoding does not depend on the system locale.
pub type WCharColumn = TextColumn<u16>;

/// A buffer intended to be bound to a column of a cursor. Elements of the buffer will contain a
/// variable amount of characters up to a maximum string length. Since most SQL types have a string
/// representation this buffer can be bound to a column of almost any type, ODBC driver and driver
/// manager should take care of the conversion. Since elements of this type have variable length an
/// indicator buffer needs to be bound, whether the column is nullable or not, and therefore does
/// not matter for this buffer.
///
/// Character type `C` is intended to be either `u8` or `u16`.
#[derive(Debug)]
pub struct TextColumn<C> {
    /// Maximum text length without terminating zero.
    max_str_len: usize,
    values: Vec<C>,
    /// Elements in this buffer are either `NULL_DATA` or hold the length of the element in value
    /// with the same index. Please note that this value may be larger than `max_str_len` if the
    /// text has been truncated.
    indicators: Vec<isize>,
}

impl<C> TextColumn<C> {
    /// This will allocate a value and indicator buffer for `batch_size` elements. Each value may
    /// have a maximum length of `max_str_len`. This implies that `max_str_len` is increased by
    /// one in order to make space for the null terminating zero at the end of strings. Uses a
    /// fallible allocation for creating the buffer. In applications often the `max_str_len` size
    /// of the buffer, might be directly inspired by the maximum size of the type, as reported, by
    /// ODBC. Which might get exceedingly large for types like VARCHAR(MAX)
    pub fn try_new(batch_size: usize, max_str_len: usize) -> Result<Self, TooLargeBufferSize>
    where
        C: Default + Copy,
    {
        // Element size is +1 to account for terminating zero
        let element_size = max_str_len + 1;
        let len = element_size * batch_size;
        let mut values = Vec::new();
        values
            .try_reserve_exact(len)
            .map_err(|_| TooLargeBufferSize {
                num_elements: batch_size,
                // We want the element size in bytes
                element_size: element_size * size_of::<C>(),
            })?;
        values.resize(len, C::default());
        Ok(TextColumn {
            max_str_len,
            values,
            indicators: vec![0; batch_size],
        })
    }

    /// This will allocate a value and indicator buffer for `batch_size` elements. Each value may
    /// have a maximum length of `max_str_len`. This implies that `max_str_len` is increased by
    /// one in order to make space for the null terminating zero at the end of strings. All
    /// indicators are set to [`crate::sys::NULL_DATA`] by default.
    pub fn new(batch_size: usize, max_str_len: usize) -> Self
    where
        C: Default + Copy,
    {
        // Element size is +1 to account for terminating zero
        let element_size = max_str_len + 1;
        let len = element_size * batch_size;
        let mut values = Vec::new();
        values.reserve_exact(len);
        values.resize(len, C::default());
        TextColumn {
            max_str_len,
            values,
            indicators: vec![NULL_DATA; batch_size],
        }
    }

    /// Bytes of string at the specified position. Includes interior nuls, but excludes the
    /// terminating nul.
    ///
    /// The column buffer does not know how many elements were in the last row group, and therefore
    /// can not guarantee the accessed element to be valid and in a defined state. It also can not
    /// panic on accessing an undefined element. It will panic however if `row_index` is larger or
    /// equal to the maximum number of elements in the buffer.
    pub fn value_at(&self, row_index: usize) -> Option<&[C]> {
        self.content_length_at(row_index).map(|length| {
            let offset = row_index * (self.max_str_len + 1);
            &self.values[offset..offset + length]
        })
    }

    /// Maximum length of elements
    pub fn max_len(&self) -> usize {
        self.max_str_len
    }

    /// Indicator value at the specified position. Useful to detect truncation of data.
    ///
    /// The column buffer does not know how many elements were in the last row group, and therefore
    /// can not guarantee the accessed element to be valid and in a defined state. It also can not
    /// panic on accessing an undefined element. It will panic however if `row_index` is larger or
    /// equal to the maximum number of elements in the buffer.
    pub fn indicator_at(&self, row_index: usize) -> Indicator {
        Indicator::from_isize(self.indicators[row_index])
    }

    /// Length of value at the specified position. This is different from an indicator as it refers
    /// to the length of the value in the buffer, not to the length of the value in the datasource.
    /// The two things are different for truncated values.
    pub fn content_length_at(&self, row_index: usize) -> Option<usize> {
        match self.indicator_at(row_index) {
            Indicator::Null => None,
            // Seen no total in the wild then binding shorter buffer to fixed sized CHAR in MSSQL.
            Indicator::NoTotal => Some(self.max_str_len),
            Indicator::Length(length_in_bytes) => {
                let length_in_chars = length_in_bytes / size_of::<C>();
                let length = min(self.max_str_len, length_in_chars);
                Some(length)
            }
        }
    }

    /// Finds an indiactor larger than the maximum element size in the range [0, num_rows).
    ///
    /// After fetching data we may want to know if any value has been truncated due to the buffer
    /// not being able to hold elements of that size. This method checks the indicator buffer
    /// element wise.
    pub fn has_truncated_values(&self, num_rows: usize) -> Option<Indicator> {
        let max_bin_length = self.max_str_len * size_of::<C>();
        self.indicators
            .iter()
            .copied()
            .take(num_rows)
            .find_map(|indicator| {
                let indicator = Indicator::from_isize(indicator);
                indicator.is_truncated(max_bin_length).then_some(indicator)
            })
    }

    /// Changes the maximum string length the buffer can hold. This operation is useful if you find
    /// an unexpected large input string during insertion.
    ///
    /// This is however costly, as not only does the new buffer have to be allocated, but all values
    /// have to copied from the old to the new buffer.
    ///
    /// This method could also be used to reduce the maximum string length, which would truncate
    /// strings in the process.
    ///
    /// This method does not adjust indicator buffers as these might hold values larger than the
    /// maximum string length.
    ///
    /// # Parameters
    ///
    /// * `new_max_str_len`: New maximum string length without terminating zero.
    /// * `num_rows`: Number of valid rows currently stored in this buffer.
    pub fn resize_max_str(&mut self, new_max_str_len: usize, num_rows: usize)
    where
        C: Default + Copy,
    {
        debug!(
            "Rebinding text column buffer with {} elements. Maximum string length {} => {}",
            num_rows, self.max_str_len, new_max_str_len
        );

        let batch_size = self.indicators.len();
        // Allocate a new buffer large enough to hold a batch of strings with maximum length.
        let mut new_values = vec![C::default(); (new_max_str_len + 1) * batch_size];
        // Copy values from old to new buffer.
        let max_copy_length = min(self.max_str_len, new_max_str_len);
        for ((&indicator, old_value), new_value) in self
            .indicators
            .iter()
            .zip(self.values.chunks_exact_mut(self.max_str_len + 1))
            .zip(new_values.chunks_exact_mut(new_max_str_len + 1))
            .take(num_rows)
        {
            match Indicator::from_isize(indicator) {
                Indicator::Null => (),
                Indicator::NoTotal => {
                    // There is no good choice here in case we are expanding the buffer. Since
                    // NO_TOTAL indicates that we use the entire buffer, but in truth it would now
                    // be padded with 0. I currently cannot think of any use case there it would
                    // matter.
                    new_value[..max_copy_length].clone_from_slice(&old_value[..max_copy_length]);
                }
                Indicator::Length(num_bytes_len) => {
                    let num_bytes_to_copy = min(num_bytes_len / size_of::<C>(), max_copy_length);
                    new_value[..num_bytes_to_copy].copy_from_slice(&old_value[..num_bytes_to_copy]);
                }
            }
        }
        self.values = new_values;
        self.max_str_len = new_max_str_len;
    }

    /// Sets the value of the buffer at index at Null or the specified binary Text. This method will
    /// panic on out of bounds index, or if input holds a text which is larger than the maximum
    /// allowed element length. `input` must be specified without the terminating zero.
    pub fn set_value(&mut self, index: usize, input: Option<&[C]>)
    where
        C: Default + Copy,
    {
        if let Some(input) = input {
            self.set_mut(index, input.len()).copy_from_slice(input);
        } else {
            self.indicators[index] = NULL_DATA;
        }
    }

    /// Can be used to set a value at a specific row index without performing a memcopy on an input
    /// slice and instead provides direct access to the underlying buffer.
    ///
    /// In situations there the memcopy can not be avoided anyway [`Self::set_value`] is likely to
    /// be more convenient. This method is very useful if you want to `write!` a string value to the
    /// buffer and the binary (**!**) length of the formatted string is known upfront.
    ///
    /// # Example: Write timestamp to text column.
    ///
    /// ```
    /// use odbc_api::buffers::TextColumn;
    /// use std::io::Write;
    ///
    /// /// Writes times formatted as hh::mm::ss.fff
    /// fn write_time(
    ///     col: &mut TextColumn<u8>,
    ///     index: usize,
    ///     hours: u8,
    ///     minutes: u8,
    ///     seconds: u8,
    ///     milliseconds: u16)
    /// {
    ///     write!(
    ///         col.set_mut(index, 12),
    ///         "{:02}:{:02}:{:02}.{:03}",
    ///         hours, minutes, seconds, milliseconds
    ///     ).unwrap();
    /// }
    /// ```
    pub fn set_mut(&mut self, index: usize, length: usize) -> &mut [C]
    where
        C: Default,
    {
        if length > self.max_str_len {
            panic!(
                "Tried to insert a value into a text buffer which is larger than the maximum \
                allowed string length for the buffer."
            );
        }
        self.indicators[index] = (length * size_of::<C>()).try_into().unwrap();
        let start = (self.max_str_len + 1) * index;
        let end = start + length;
        // Let's insert a terminating zero at the end to be on the safe side, in case the ODBC
        // driver would not care about the value in the index buffer and only look for the
        // terminating zero.
        self.values[end] = C::default();
        &mut self.values[start..end]
    }

    /// Fills the column with NULL, between From and To
    pub fn fill_null(&mut self, from: usize, to: usize) {
        for index in from..to {
            self.indicators[index] = NULL_DATA;
        }
    }

    /// Provides access to the raw underlying value buffer. Normal applications should have little
    /// reason to call this method. Yet it may be useful for writing bindings which copy directly
    /// from the ODBC in memory representation into other kinds of buffers.
    ///
    /// The buffer contains the bytes for every non null valid element, padded to the maximum string
    /// length. The content of the padding bytes is undefined. Usually ODBC drivers write a
    /// terminating zero at the end of each string. For the actual value length call
    /// [`Self::content_length_at`]. Any element starts at index * ([`Self::max_len`] + 1).
    pub fn raw_value_buffer(&self, num_valid_rows: usize) -> &[C] {
        &self.values[..(self.max_str_len + 1) * num_valid_rows]
    }

    /// The maximum number of rows the TextColumn can hold.
    pub fn row_capacity(&self) -> usize {
        self.values.len()
    }
}

impl WCharColumn {
    /// The string slice at the specified position as `U16Str`. Includes interior nuls, but excludes
    /// the terminating nul.
    ///
    /// # Safety
    ///
    /// The column buffer does not know how many elements were in the last row group, and therefore
    /// can not guarantee the accessed element to be valid and in a defined state. It also can not
    /// panic on accessing an undefined element. It will panic however if `row_index` is larger or
    /// equal to the maximum number of elements in the buffer.
    pub unsafe fn ustr_at(&self, row_index: usize) -> Option<&U16Str> {
        self.value_at(row_index).map(U16Str::from_slice)
    }
}

unsafe impl<C: 'static> ColumnBuffer for TextColumn<C>
where
    TextColumn<C>: CDataMut + HasDataType,
{
    type View<'a> = TextColumnView<'a, C>;

    fn view(&self, valid_rows: usize) -> TextColumnView<'_, C> {
        TextColumnView {
            num_rows: valid_rows,
            col: self,
        }
    }

    fn fill_default(&mut self, from: usize, to: usize) {
        self.fill_null(from, to)
    }

    /// Maximum number of text strings this column may hold.
    fn capacity(&self) -> usize {
        self.indicators.len()
    }

    fn has_truncated_values(&self, num_rows: usize) -> Option<Indicator> {
        let max_bin_length = self.max_str_len * size_of::<C>();
        self.indicators
            .iter()
            .copied()
            .take(num_rows)
            .find_map(|indicator| {
                let indicator = Indicator::from_isize(indicator);
                indicator.is_truncated(max_bin_length).then_some(indicator)
            })
    }
}

/// Allows read only access to the valid part of a text column.
///
/// You may ask, why is this type required, should we not just be able to use `&TextColumn`? The
/// problem with `TextColumn` is, that it is a buffer, but it has no idea how many of its members
/// are actually valid, and have been returned with the last row group of the the result set. That
/// number is maintained on the level of the entire column buffer. So a text column knows the number
/// of valid rows, in addition to holding a reference to the buffer, in order to guarantee, that
/// every element acccessed through it, is valid.
#[derive(Debug, Clone, Copy)]
pub struct TextColumnView<'c, C> {
    num_rows: usize,
    col: &'c TextColumn<C>,
}

impl<'c, C> TextColumnView<'c, C> {
    /// The number of valid elements in the text column.
    pub fn len(&self) -> usize {
        self.num_rows
    }

    /// True if, and only if there are no valid rows in the column buffer.
    pub fn is_empty(&self) -> bool {
        self.num_rows == 0
    }

    /// Slice of text at the specified row index without terminating zero.
    pub fn get(&self, index: usize) -> Option<&'c [C]> {
        self.col.value_at(index)
    }

    /// Iterator over the valid elements of the text buffer
    pub fn iter(&self) -> TextColumnIt<'c, C> {
        TextColumnIt {
            pos: 0,
            num_rows: self.num_rows,
            col: self.col,
        }
    }

    /// Length of value at the specified position. This is different from an indicator as it refers
    /// to the length of the value in the buffer, not to the length of the value in the datasource.
    /// The two things are different for truncated values.
    pub fn content_length_at(&self, row_index: usize) -> Option<usize> {
        if row_index >= self.num_rows {
            panic!("Row index points beyond the range of valid values.")
        }
        self.col.content_length_at(row_index)
    }

    /// Provides access to the raw underlying value buffer. Normal applications should have little
    /// reason to call this method. Yet it may be useful for writing bindings which copy directly
    /// from the ODBC in memory representation into other kinds of buffers.
    ///
    /// The buffer contains the bytes for every non null valid element, padded to the maximum string
    /// length. The content of the padding bytes is undefined. Usually ODBC drivers write a
    /// terminating zero at the end of each string. For the actual value length call
    /// [`Self::content_length_at`]. Any element starts at index * ([`Self::max_len`] + 1).
    pub fn raw_value_buffer(&self) -> &'c [C] {
        self.col.raw_value_buffer(self.num_rows)
    }

    pub fn max_len(&self) -> usize {
        self.col.max_len()
    }

    /// `Some` if any value is truncated.
    ///
    /// After fetching data we may want to know if any value has been truncated due to the buffer
    /// not being able to hold elements of that size. This method checks the indicator buffer
    /// element wise.
    pub fn has_truncated_values(&self) -> Option<Indicator> {
        self.col.has_truncated_values(self.num_rows)
    }
}

unsafe impl<'a, C: 'static> BoundInputSlice<'a> for TextColumn<C> {
    type SliceMut = TextColumnSliceMut<'a, C>;

    unsafe fn as_view_mut(
        &'a mut self,
        parameter_index: u16,
        stmt: StatementRef<'a>,
    ) -> Self::SliceMut {
        TextColumnSliceMut {
            column: self,
            stmt,
            parameter_index,
        }
    }
}

/// A view to a mutable array parameter text buffer, which allows for filling the buffer with
/// values.
pub struct TextColumnSliceMut<'a, C> {
    column: &'a mut TextColumn<C>,
    // Needed to rebind the column in case of resize
    stmt: StatementRef<'a>,
    // Also needed to rebind the column in case of resize
    parameter_index: u16,
}

impl<'a, C> TextColumnSliceMut<'a, C>
where
    C: Default + Copy,
{
    /// Sets the value of the buffer at index at Null or the specified binary Text. This method will
    /// panic on out of bounds index, or if input holds a text which is larger than the maximum
    /// allowed element length. `element` must be specified without the terminating zero.
    pub fn set_cell(&mut self, row_index: usize, element: Option<&[C]>) {
        self.column.set_value(row_index, element)
    }

    /// Ensures that the buffer is large enough to hold elements of `element_length`. Does nothing
    /// if the buffer is already large enough. Otherwise it will reallocate and rebind the buffer.
    /// The first `num_rows_to_copy_elements` will be copied from the old value buffer to the new
    /// one. This makes this an extremely expensive operation.
    pub fn ensure_max_element_length(
        &mut self,
        element_length: usize,
        num_rows_to_copy: usize,
    ) -> Result<(), Error>
    where
        TextColumn<C>: HasDataType + CData,
    {
        // Column buffer is not large enough to hold the element. We must allocate a larger buffer
        // in order to hold it. This invalidates the pointers previously bound to the statement. So
        // we rebind them.
        if element_length > self.column.max_len() {
            let new_max_str_len = element_length;
            self.column
                .resize_max_str(new_max_str_len, num_rows_to_copy);
            unsafe {
                self.stmt
                    .bind_input_parameter(self.parameter_index, self.column)
                    .into_result(&self.stmt)?
            }
        }
        Ok(())
    }

    /// Can be used to set a value at a specific row index without performing a memcopy on an input
    /// slice and instead provides direct access to the underlying buffer.
    ///
    /// In situations there the memcopy can not be avoided anyway [`Self::set_cell`] is likely to
    /// be more convenient. This method is very useful if you want to `write!` a string value to the
    /// buffer and the binary (**!**) length of the formatted string is known upfront.
    ///
    /// # Example: Write timestamp to text column.
    ///
    /// ```
    /// use odbc_api::buffers::TextColumnSliceMut;
    /// use std::io::Write;
    ///
    /// /// Writes times formatted as hh::mm::ss.fff
    /// fn write_time(
    ///     col: &mut TextColumnSliceMut<u8>,
    ///     index: usize,
    ///     hours: u8,
    ///     minutes: u8,
    ///     seconds: u8,
    ///     milliseconds: u16)
    /// {
    ///     write!(
    ///         col.set_mut(index, 12),
    ///         "{:02}:{:02}:{:02}.{:03}",
    ///         hours, minutes, seconds, milliseconds
    ///     ).unwrap();
    /// }
    /// ```
    pub fn set_mut(&mut self, index: usize, length: usize) -> &mut [C] {
        self.column.set_mut(index, length)
    }
}

/// Iterator over a text column. See [`TextColumnView::iter`]
#[derive(Debug)]
pub struct TextColumnIt<'c, C> {
    pos: usize,
    num_rows: usize,
    col: &'c TextColumn<C>,
}

impl<'c, C> TextColumnIt<'c, C> {
    fn next_impl(&mut self) -> Option<Option<&'c [C]>> {
        if self.pos == self.num_rows {
            None
        } else {
            let ret = Some(self.col.value_at(self.pos));
            self.pos += 1;
            ret
        }
    }
}

impl<'c> Iterator for TextColumnIt<'c, u8> {
    type Item = Option<&'c [u8]>;

    fn next(&mut self) -> Option<Self::Item> {
        self.next_impl()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.num_rows - self.pos;
        (len, Some(len))
    }
}

impl<'c> ExactSizeIterator for TextColumnIt<'c, u8> {}

impl<'c> Iterator for TextColumnIt<'c, u16> {
    type Item = Option<&'c U16Str>;

    fn next(&mut self) -> Option<Self::Item> {
        self.next_impl().map(|opt| opt.map(U16Str::from_slice))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.num_rows - self.pos;
        (len, Some(len))
    }
}

impl<'c> ExactSizeIterator for TextColumnIt<'c, u16> {}

unsafe impl CData for CharColumn {
    fn cdata_type(&self) -> CDataType {
        CDataType::Char
    }

    fn indicator_ptr(&self) -> *const isize {
        self.indicators.as_ptr()
    }

    fn value_ptr(&self) -> *const c_void {
        self.values.as_ptr() as *const c_void
    }

    fn buffer_length(&self) -> isize {
        (self.max_str_len + 1).try_into().unwrap()
    }
}

unsafe impl CDataMut for CharColumn {
    fn mut_indicator_ptr(&mut self) -> *mut isize {
        self.indicators.as_mut_ptr()
    }

    fn mut_value_ptr(&mut self) -> *mut c_void {
        self.values.as_mut_ptr() as *mut c_void
    }
}

impl HasDataType for CharColumn {
    fn data_type(&self) -> DataType {
        DataType::Varchar {
            length: NonZeroUsize::new(self.max_str_len),
        }
    }
}

unsafe impl CData for WCharColumn {
    fn cdata_type(&self) -> CDataType {
        CDataType::WChar
    }

    fn indicator_ptr(&self) -> *const isize {
        self.indicators.as_ptr()
    }

    fn value_ptr(&self) -> *const c_void {
        self.values.as_ptr() as *const c_void
    }

    fn buffer_length(&self) -> isize {
        ((self.max_str_len + 1) * 2).try_into().unwrap()
    }
}

unsafe impl CDataMut for WCharColumn {
    fn mut_indicator_ptr(&mut self) -> *mut isize {
        self.indicators.as_mut_ptr()
    }

    fn mut_value_ptr(&mut self) -> *mut c_void {
        self.values.as_mut_ptr() as *mut c_void
    }
}

impl HasDataType for WCharColumn {
    fn data_type(&self) -> DataType {
        DataType::WVarchar {
            length: NonZeroUsize::new(self.max_str_len),
        }
    }
}