odbc_api/buffers/text_column.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
use crate::{
columnar_bulk_inserter::BoundInputSlice,
error::TooLargeBufferSize,
handles::{CData, CDataMut, HasDataType, Statement, StatementRef},
DataType, Error,
};
use super::{ColumnBuffer, Indicator};
use log::debug;
use odbc_sys::{CDataType, NULL_DATA};
use std::{cmp::min, ffi::c_void, mem::size_of, num::NonZeroUsize, panic};
use widestring::U16Str;
/// A column buffer for character data. The actual encoding used may depend on your system locale.
pub type CharColumn = TextColumn<u8>;
/// This buffer uses wide characters which implies UTF-16 encoding. UTF-8 encoding is preferable for
/// most applications, but contrary to its sibling [`crate::buffers::CharColumn`] this buffer types
/// implied encoding does not depend on the system locale.
pub type WCharColumn = TextColumn<u16>;
/// A buffer intended to be bound to a column of a cursor. Elements of the buffer will contain a
/// variable amount of characters up to a maximum string length. Since most SQL types have a string
/// representation this buffer can be bound to a column of almost any type, ODBC driver and driver
/// manager should take care of the conversion. Since elements of this type have variable length an
/// indicator buffer needs to be bound, whether the column is nullable or not, and therefore does
/// not matter for this buffer.
///
/// Character type `C` is intended to be either `u8` or `u16`.
#[derive(Debug)]
pub struct TextColumn<C> {
/// Maximum text length without terminating zero.
max_str_len: usize,
values: Vec<C>,
/// Elements in this buffer are either `NULL_DATA` or hold the length of the element in value
/// with the same index. Please note that this value may be larger than `max_str_len` if the
/// text has been truncated.
indicators: Vec<isize>,
}
impl<C> TextColumn<C> {
/// This will allocate a value and indicator buffer for `batch_size` elements. Each value may
/// have a maximum length of `max_str_len`. This implies that `max_str_len` is increased by
/// one in order to make space for the null terminating zero at the end of strings. Uses a
/// fallible allocation for creating the buffer. In applications often the `max_str_len` size
/// of the buffer, might be directly inspired by the maximum size of the type, as reported, by
/// ODBC. Which might get exceedingly large for types like VARCHAR(MAX)
pub fn try_new(batch_size: usize, max_str_len: usize) -> Result<Self, TooLargeBufferSize>
where
C: Default + Copy,
{
// Element size is +1 to account for terminating zero
let element_size = max_str_len + 1;
let len = element_size * batch_size;
let mut values = Vec::new();
values
.try_reserve_exact(len)
.map_err(|_| TooLargeBufferSize {
num_elements: batch_size,
// We want the element size in bytes
element_size: element_size * size_of::<C>(),
})?;
values.resize(len, C::default());
Ok(TextColumn {
max_str_len,
values,
indicators: vec![0; batch_size],
})
}
/// This will allocate a value and indicator buffer for `batch_size` elements. Each value may
/// have a maximum length of `max_str_len`. This implies that `max_str_len` is increased by
/// one in order to make space for the null terminating zero at the end of strings. All
/// indicators are set to [`crate::sys::NULL_DATA`] by default.
pub fn new(batch_size: usize, max_str_len: usize) -> Self
where
C: Default + Copy,
{
// Element size is +1 to account for terminating zero
let element_size = max_str_len + 1;
let len = element_size * batch_size;
let mut values = Vec::new();
values.reserve_exact(len);
values.resize(len, C::default());
TextColumn {
max_str_len,
values,
indicators: vec![NULL_DATA; batch_size],
}
}
/// Bytes of string at the specified position. Includes interior nuls, but excludes the
/// terminating nul.
///
/// The column buffer does not know how many elements were in the last row group, and therefore
/// can not guarantee the accessed element to be valid and in a defined state. It also can not
/// panic on accessing an undefined element. It will panic however if `row_index` is larger or
/// equal to the maximum number of elements in the buffer.
pub fn value_at(&self, row_index: usize) -> Option<&[C]> {
self.content_length_at(row_index).map(|length| {
let offset = row_index * (self.max_str_len + 1);
&self.values[offset..offset + length]
})
}
/// Maximum length of elements
pub fn max_len(&self) -> usize {
self.max_str_len
}
/// Indicator value at the specified position. Useful to detect truncation of data.
///
/// The column buffer does not know how many elements were in the last row group, and therefore
/// can not guarantee the accessed element to be valid and in a defined state. It also can not
/// panic on accessing an undefined element. It will panic however if `row_index` is larger or
/// equal to the maximum number of elements in the buffer.
pub fn indicator_at(&self, row_index: usize) -> Indicator {
Indicator::from_isize(self.indicators[row_index])
}
/// Length of value at the specified position. This is different from an indicator as it refers
/// to the length of the value in the buffer, not to the length of the value in the datasource.
/// The two things are different for truncated values.
pub fn content_length_at(&self, row_index: usize) -> Option<usize> {
match self.indicator_at(row_index) {
Indicator::Null => None,
// Seen no total in the wild then binding shorter buffer to fixed sized CHAR in MSSQL.
Indicator::NoTotal => Some(self.max_str_len),
Indicator::Length(length_in_bytes) => {
let length_in_chars = length_in_bytes / size_of::<C>();
let length = min(self.max_str_len, length_in_chars);
Some(length)
}
}
}
/// Finds an indiactor larger than the maximum element size in the range [0, num_rows).
///
/// After fetching data we may want to know if any value has been truncated due to the buffer
/// not being able to hold elements of that size. This method checks the indicator buffer
/// element wise.
pub fn has_truncated_values(&self, num_rows: usize) -> Option<Indicator> {
let max_bin_length = self.max_str_len * size_of::<C>();
self.indicators
.iter()
.copied()
.take(num_rows)
.find_map(|indicator| {
let indicator = Indicator::from_isize(indicator);
indicator.is_truncated(max_bin_length).then_some(indicator)
})
}
/// Changes the maximum string length the buffer can hold. This operation is useful if you find
/// an unexpected large input string during insertion.
///
/// This is however costly, as not only does the new buffer have to be allocated, but all values
/// have to copied from the old to the new buffer.
///
/// This method could also be used to reduce the maximum string length, which would truncate
/// strings in the process.
///
/// This method does not adjust indicator buffers as these might hold values larger than the
/// maximum string length.
///
/// # Parameters
///
/// * `new_max_str_len`: New maximum string length without terminating zero.
/// * `num_rows`: Number of valid rows currently stored in this buffer.
pub fn resize_max_str(&mut self, new_max_str_len: usize, num_rows: usize)
where
C: Default + Copy,
{
debug!(
"Rebinding text column buffer with {} elements. Maximum string length {} => {}",
num_rows, self.max_str_len, new_max_str_len
);
let batch_size = self.indicators.len();
// Allocate a new buffer large enough to hold a batch of strings with maximum length.
let mut new_values = vec![C::default(); (new_max_str_len + 1) * batch_size];
// Copy values from old to new buffer.
let max_copy_length = min(self.max_str_len, new_max_str_len);
for ((&indicator, old_value), new_value) in self
.indicators
.iter()
.zip(self.values.chunks_exact_mut(self.max_str_len + 1))
.zip(new_values.chunks_exact_mut(new_max_str_len + 1))
.take(num_rows)
{
match Indicator::from_isize(indicator) {
Indicator::Null => (),
Indicator::NoTotal => {
// There is no good choice here in case we are expanding the buffer. Since
// NO_TOTAL indicates that we use the entire buffer, but in truth it would now
// be padded with 0. I currently cannot think of any use case there it would
// matter.
new_value[..max_copy_length].clone_from_slice(&old_value[..max_copy_length]);
}
Indicator::Length(num_bytes_len) => {
let num_bytes_to_copy = min(num_bytes_len / size_of::<C>(), max_copy_length);
new_value[..num_bytes_to_copy].copy_from_slice(&old_value[..num_bytes_to_copy]);
}
}
}
self.values = new_values;
self.max_str_len = new_max_str_len;
}
/// Sets the value of the buffer at index at Null or the specified binary Text. This method will
/// panic on out of bounds index, or if input holds a text which is larger than the maximum
/// allowed element length. `input` must be specified without the terminating zero.
pub fn set_value(&mut self, index: usize, input: Option<&[C]>)
where
C: Default + Copy,
{
if let Some(input) = input {
self.set_mut(index, input.len()).copy_from_slice(input);
} else {
self.indicators[index] = NULL_DATA;
}
}
/// Can be used to set a value at a specific row index without performing a memcopy on an input
/// slice and instead provides direct access to the underlying buffer.
///
/// In situations there the memcopy can not be avoided anyway [`Self::set_value`] is likely to
/// be more convenient. This method is very useful if you want to `write!` a string value to the
/// buffer and the binary (**!**) length of the formatted string is known upfront.
///
/// # Example: Write timestamp to text column.
///
/// ```
/// use odbc_api::buffers::TextColumn;
/// use std::io::Write;
///
/// /// Writes times formatted as hh::mm::ss.fff
/// fn write_time(
/// col: &mut TextColumn<u8>,
/// index: usize,
/// hours: u8,
/// minutes: u8,
/// seconds: u8,
/// milliseconds: u16)
/// {
/// write!(
/// col.set_mut(index, 12),
/// "{:02}:{:02}:{:02}.{:03}",
/// hours, minutes, seconds, milliseconds
/// ).unwrap();
/// }
/// ```
pub fn set_mut(&mut self, index: usize, length: usize) -> &mut [C]
where
C: Default,
{
if length > self.max_str_len {
panic!(
"Tried to insert a value into a text buffer which is larger than the maximum \
allowed string length for the buffer."
);
}
self.indicators[index] = (length * size_of::<C>()).try_into().unwrap();
let start = (self.max_str_len + 1) * index;
let end = start + length;
// Let's insert a terminating zero at the end to be on the safe side, in case the ODBC
// driver would not care about the value in the index buffer and only look for the
// terminating zero.
self.values[end] = C::default();
&mut self.values[start..end]
}
/// Fills the column with NULL, between From and To
pub fn fill_null(&mut self, from: usize, to: usize) {
for index in from..to {
self.indicators[index] = NULL_DATA;
}
}
/// Provides access to the raw underlying value buffer. Normal applications should have little
/// reason to call this method. Yet it may be useful for writing bindings which copy directly
/// from the ODBC in memory representation into other kinds of buffers.
///
/// The buffer contains the bytes for every non null valid element, padded to the maximum string
/// length. The content of the padding bytes is undefined. Usually ODBC drivers write a
/// terminating zero at the end of each string. For the actual value length call
/// [`Self::content_length_at`]. Any element starts at index * ([`Self::max_len`] + 1).
pub fn raw_value_buffer(&self, num_valid_rows: usize) -> &[C] {
&self.values[..(self.max_str_len + 1) * num_valid_rows]
}
/// The maximum number of rows the TextColumn can hold.
pub fn row_capacity(&self) -> usize {
self.values.len()
}
}
impl WCharColumn {
/// The string slice at the specified position as `U16Str`. Includes interior nuls, but excludes
/// the terminating nul.
///
/// # Safety
///
/// The column buffer does not know how many elements were in the last row group, and therefore
/// can not guarantee the accessed element to be valid and in a defined state. It also can not
/// panic on accessing an undefined element. It will panic however if `row_index` is larger or
/// equal to the maximum number of elements in the buffer.
pub unsafe fn ustr_at(&self, row_index: usize) -> Option<&U16Str> {
self.value_at(row_index).map(U16Str::from_slice)
}
}
unsafe impl<C: 'static> ColumnBuffer for TextColumn<C>
where
TextColumn<C>: CDataMut + HasDataType,
{
type View<'a> = TextColumnView<'a, C>;
fn view(&self, valid_rows: usize) -> TextColumnView<'_, C> {
TextColumnView {
num_rows: valid_rows,
col: self,
}
}
fn fill_default(&mut self, from: usize, to: usize) {
self.fill_null(from, to)
}
/// Maximum number of text strings this column may hold.
fn capacity(&self) -> usize {
self.indicators.len()
}
fn has_truncated_values(&self, num_rows: usize) -> Option<Indicator> {
let max_bin_length = self.max_str_len * size_of::<C>();
self.indicators
.iter()
.copied()
.take(num_rows)
.find_map(|indicator| {
let indicator = Indicator::from_isize(indicator);
indicator.is_truncated(max_bin_length).then_some(indicator)
})
}
}
/// Allows read only access to the valid part of a text column.
///
/// You may ask, why is this type required, should we not just be able to use `&TextColumn`? The
/// problem with `TextColumn` is, that it is a buffer, but it has no idea how many of its members
/// are actually valid, and have been returned with the last row group of the the result set. That
/// number is maintained on the level of the entire column buffer. So a text column knows the number
/// of valid rows, in addition to holding a reference to the buffer, in order to guarantee, that
/// every element acccessed through it, is valid.
#[derive(Debug, Clone, Copy)]
pub struct TextColumnView<'c, C> {
num_rows: usize,
col: &'c TextColumn<C>,
}
impl<'c, C> TextColumnView<'c, C> {
/// The number of valid elements in the text column.
pub fn len(&self) -> usize {
self.num_rows
}
/// True if, and only if there are no valid rows in the column buffer.
pub fn is_empty(&self) -> bool {
self.num_rows == 0
}
/// Slice of text at the specified row index without terminating zero.
pub fn get(&self, index: usize) -> Option<&'c [C]> {
self.col.value_at(index)
}
/// Iterator over the valid elements of the text buffer
pub fn iter(&self) -> TextColumnIt<'c, C> {
TextColumnIt {
pos: 0,
num_rows: self.num_rows,
col: self.col,
}
}
/// Length of value at the specified position. This is different from an indicator as it refers
/// to the length of the value in the buffer, not to the length of the value in the datasource.
/// The two things are different for truncated values.
pub fn content_length_at(&self, row_index: usize) -> Option<usize> {
if row_index >= self.num_rows {
panic!("Row index points beyond the range of valid values.")
}
self.col.content_length_at(row_index)
}
/// Provides access to the raw underlying value buffer. Normal applications should have little
/// reason to call this method. Yet it may be useful for writing bindings which copy directly
/// from the ODBC in memory representation into other kinds of buffers.
///
/// The buffer contains the bytes for every non null valid element, padded to the maximum string
/// length. The content of the padding bytes is undefined. Usually ODBC drivers write a
/// terminating zero at the end of each string. For the actual value length call
/// [`Self::content_length_at`]. Any element starts at index * ([`Self::max_len`] + 1).
pub fn raw_value_buffer(&self) -> &'c [C] {
self.col.raw_value_buffer(self.num_rows)
}
pub fn max_len(&self) -> usize {
self.col.max_len()
}
/// `Some` if any value is truncated.
///
/// After fetching data we may want to know if any value has been truncated due to the buffer
/// not being able to hold elements of that size. This method checks the indicator buffer
/// element wise.
pub fn has_truncated_values(&self) -> Option<Indicator> {
self.col.has_truncated_values(self.num_rows)
}
}
unsafe impl<'a, C: 'static> BoundInputSlice<'a> for TextColumn<C> {
type SliceMut = TextColumnSliceMut<'a, C>;
unsafe fn as_view_mut(
&'a mut self,
parameter_index: u16,
stmt: StatementRef<'a>,
) -> Self::SliceMut {
TextColumnSliceMut {
column: self,
stmt,
parameter_index,
}
}
}
/// A view to a mutable array parameter text buffer, which allows for filling the buffer with
/// values.
pub struct TextColumnSliceMut<'a, C> {
column: &'a mut TextColumn<C>,
// Needed to rebind the column in case of resize
stmt: StatementRef<'a>,
// Also needed to rebind the column in case of resize
parameter_index: u16,
}
impl<'a, C> TextColumnSliceMut<'a, C>
where
C: Default + Copy,
{
/// Sets the value of the buffer at index at Null or the specified binary Text. This method will
/// panic on out of bounds index, or if input holds a text which is larger than the maximum
/// allowed element length. `element` must be specified without the terminating zero.
pub fn set_cell(&mut self, row_index: usize, element: Option<&[C]>) {
self.column.set_value(row_index, element)
}
/// Ensures that the buffer is large enough to hold elements of `element_length`. Does nothing
/// if the buffer is already large enough. Otherwise it will reallocate and rebind the buffer.
/// The first `num_rows_to_copy_elements` will be copied from the old value buffer to the new
/// one. This makes this an extremely expensive operation.
pub fn ensure_max_element_length(
&mut self,
element_length: usize,
num_rows_to_copy: usize,
) -> Result<(), Error>
where
TextColumn<C>: HasDataType + CData,
{
// Column buffer is not large enough to hold the element. We must allocate a larger buffer
// in order to hold it. This invalidates the pointers previously bound to the statement. So
// we rebind them.
if element_length > self.column.max_len() {
let new_max_str_len = element_length;
self.column
.resize_max_str(new_max_str_len, num_rows_to_copy);
unsafe {
self.stmt
.bind_input_parameter(self.parameter_index, self.column)
.into_result(&self.stmt)?
}
}
Ok(())
}
/// Can be used to set a value at a specific row index without performing a memcopy on an input
/// slice and instead provides direct access to the underlying buffer.
///
/// In situations there the memcopy can not be avoided anyway [`Self::set_cell`] is likely to
/// be more convenient. This method is very useful if you want to `write!` a string value to the
/// buffer and the binary (**!**) length of the formatted string is known upfront.
///
/// # Example: Write timestamp to text column.
///
/// ```
/// use odbc_api::buffers::TextColumnSliceMut;
/// use std::io::Write;
///
/// /// Writes times formatted as hh::mm::ss.fff
/// fn write_time(
/// col: &mut TextColumnSliceMut<u8>,
/// index: usize,
/// hours: u8,
/// minutes: u8,
/// seconds: u8,
/// milliseconds: u16)
/// {
/// write!(
/// col.set_mut(index, 12),
/// "{:02}:{:02}:{:02}.{:03}",
/// hours, minutes, seconds, milliseconds
/// ).unwrap();
/// }
/// ```
pub fn set_mut(&mut self, index: usize, length: usize) -> &mut [C] {
self.column.set_mut(index, length)
}
}
/// Iterator over a text column. See [`TextColumnView::iter`]
#[derive(Debug)]
pub struct TextColumnIt<'c, C> {
pos: usize,
num_rows: usize,
col: &'c TextColumn<C>,
}
impl<'c, C> TextColumnIt<'c, C> {
fn next_impl(&mut self) -> Option<Option<&'c [C]>> {
if self.pos == self.num_rows {
None
} else {
let ret = Some(self.col.value_at(self.pos));
self.pos += 1;
ret
}
}
}
impl<'c> Iterator for TextColumnIt<'c, u8> {
type Item = Option<&'c [u8]>;
fn next(&mut self) -> Option<Self::Item> {
self.next_impl()
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.num_rows - self.pos;
(len, Some(len))
}
}
impl<'c> ExactSizeIterator for TextColumnIt<'c, u8> {}
impl<'c> Iterator for TextColumnIt<'c, u16> {
type Item = Option<&'c U16Str>;
fn next(&mut self) -> Option<Self::Item> {
self.next_impl().map(|opt| opt.map(U16Str::from_slice))
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.num_rows - self.pos;
(len, Some(len))
}
}
impl<'c> ExactSizeIterator for TextColumnIt<'c, u16> {}
unsafe impl CData for CharColumn {
fn cdata_type(&self) -> CDataType {
CDataType::Char
}
fn indicator_ptr(&self) -> *const isize {
self.indicators.as_ptr()
}
fn value_ptr(&self) -> *const c_void {
self.values.as_ptr() as *const c_void
}
fn buffer_length(&self) -> isize {
(self.max_str_len + 1).try_into().unwrap()
}
}
unsafe impl CDataMut for CharColumn {
fn mut_indicator_ptr(&mut self) -> *mut isize {
self.indicators.as_mut_ptr()
}
fn mut_value_ptr(&mut self) -> *mut c_void {
self.values.as_mut_ptr() as *mut c_void
}
}
impl HasDataType for CharColumn {
fn data_type(&self) -> DataType {
DataType::Varchar {
length: NonZeroUsize::new(self.max_str_len),
}
}
}
unsafe impl CData for WCharColumn {
fn cdata_type(&self) -> CDataType {
CDataType::WChar
}
fn indicator_ptr(&self) -> *const isize {
self.indicators.as_ptr()
}
fn value_ptr(&self) -> *const c_void {
self.values.as_ptr() as *const c_void
}
fn buffer_length(&self) -> isize {
((self.max_str_len + 1) * 2).try_into().unwrap()
}
}
unsafe impl CDataMut for WCharColumn {
fn mut_indicator_ptr(&mut self) -> *mut isize {
self.indicators.as_mut_ptr()
}
fn mut_value_ptr(&mut self) -> *mut c_void {
self.values.as_mut_ptr() as *mut c_void
}
}
impl HasDataType for WCharColumn {
fn data_type(&self) -> DataType {
DataType::WVarchar {
length: NonZeroUsize::new(self.max_str_len),
}
}
}